472 research outputs found

    RNA Interference Can Rebalance the Nitrogen Sink of Maize Seeds without Losing Hard Endosperm

    Get PDF
    Background: One of the goals of plant breeding is to create crops to provide better nutrition for humans and livestock. Insufficient intake of protein is one of the most severe factors affecting the growth and development of children in developing countries. More than a century ago, in 1896, Hopkins initiated the well-known Illinois long-term selection for maize seed protein concentration, yielding four protein strains. By continuously accumulating QTLs, Illinois High Protein (IHP) reached a protein level 2.5-fold higher than normal maize, with the most increased fraction being the zein protein, which was shown to contain no lysine soon after the long-term selection program initiated. Therefore, IHP is of little value for feeding humans and monogastric animals. Although high-lysine lines of non-vitreous mutants were based on reduced zeins, the kernel soft texture precluded their practical use. Kernel hardness in opaque 2 (o2) could be restored in quality protein maize (QPM) with quantitative trait loci called o2 modifiers (Mo2s), but those did not increase total protein levels. Methods: The most predominant zeins are the 22- and 19-kDa a-zeins. To achieve a combination of desired traits, we used RNA interference (RNAi) against both a-zeins in IHP and evaluated the silencing effect by SDS-PAGE. Total protein, amino acid composition and kernel texture were analyzed. Conclusions: The a-zeins were dramatically reduced, but the high total seed protein level remained unchanged by complementary increase of non-zein proteins. Moreover, the residual zein levels still allowed for a vitreous hard seed. Suc

    Detection of multipartite entanglement with two-body correlations

    Full text link
    We show how to detect entanglement with criteria built from simple two-body correlation terms. Since many natural Hamiltonians are sums of such correlation terms, our ideas can be used to detect entanglement by energy measurement. Our criteria can straightforwardly be applied for detecting different forms of multipartite entanglement in familiar spin models in thermal equilibrium.Comment: 5 pages including 2 figures, LaTeX; for the proceedings of the DPG spring meeting, Berlin, March 200

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group

    Candidate target genes for loss of heterozygosity on human chromosome 17q21

    Get PDF
    Loss of heterozygosity (LOH) on chromosome 17q21 has been detected in 30% of primary human breast tumours. The smallest common region deleted occurred in an interval between the D17S746 and D17S846 polymorphic sequences tagged sites that are located on two recombinant PI-bacteriophage clones of chromosome 17q21: 122F4 and 50H1, respectively. To identify the target gene for LOH, we defined a map of this chromosomal region. We found the following genes: JUP, FK506BP10, SC65, Gastrin (GAS) and HAP1. Of the genes that have been identified in this study, only JUP is located between D17S746 and D17S846. This was of interest since earlier studies have shown that JUP expression is altered in breast, lung and thyroid tumours as well as cell lines having LOH in chromosome 17q21. However, no mutations were detected in JUP using single-strand conformation polymorphism analysis of primary breast tumour DNAs having LOH at 17q21. We could find no evidence that the transcription promoter for JUP is methylated in tumour DNAs having LOH at 17q21. We suspect that the target gene for LOH in primary human breast tumours on chromosome 17q21 is either JUP and results in a haploinsufficiency for expression or may be an unidentified gene located in the interval between D17S846 and JUP. © 2004 Cancer Research UK

    Quality of life and illness perception in working and sick-listed chronic RSI patients

    Get PDF
    OBJECTIVE: To study differences between working and sick-listed chronic repetitive strain injury (RSI) patients in the Netherlands with respect to indices of quality of life and illness perception. METHODS: In a cross-sectional design, one questionnaire was sent to all 3,250 members of the national RSI patient association. For descriptive purposes, demographics, work status and complaint-related variables such as severity, type, duration, and extent of complaints were asked for. Indices of quality of life were assessed through seven SF-36 subscales (physical (role) functioning, emotional role functioning, social functioning, pain, mental health and vitality). A work-ability estimate and VAS scales were used to assess complaint-related decrease in quality of life. Illness perception was assessed through the brief illness perception questionnaire (IPQ-B). Working patients and sick-listed patients were identified. Tests between the two independent groups were performed and P-values < 0.01 were considered significant. RESULTS: Data from 1,121 questionnaires were used. Two-thirds of the respondents worked and one-third were sick-listed. Average duration of complaints was over 5 years in both groups. The sick-listed patients reported significantly more severe and extensive complaints than did the working patients. In addition, sick-listed patients reported significantly poorer mental health, physical (role) functioning, emotional role functioning, pain, vitality, and work-ability. With respect to illness perception, both groups showed the same concerns about their complaints, but sick-listed patients had significantly more distorted perceptions in their emotional response, identity, treatment control, personal control, timeline, and life consequences. Complaint-related decrease in quality of life was 31% in the working patients and 49% in the sick-listed patients. CONCLUSION: The study found a greater number and severe complaints among sick-listed chronic RSI patients and a considerably decreased quality of life because of their complaints. These findings may allow for a better treatment focus in the futur

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Relationship between cardiac deformation parameters measured by cardiovascular magnetic resonance and aerobic fitness in endurance athletes

    Get PDF
    Background: Athletic training leads to remodelling of both left and right ventricles with increased myocardial mass and cavity dilatation. Whether changes in cardiac strain parameters occur in response to training is less well established. In this study we investigated the relationship in trained athletes between cardiovascular magnetic resonance (CMR) derived strain parameters of cardiac function and fitness. Methods: 35 endurance athletes and 35 age and sex matched controls underwent CMR at 3.0T including cine imaging in multiple planes and tissue tagging by spatial modulation of magnetization (SPAMM). CMR data were analysed quantitatively reporting circumferential strain and torsion from tagged images and left and right ventricular longitudinal strain from feature tracking of cine images. Athletes performed a maximal ramp-incremental exercise test to determine the lactate threshold (LT) and maximal oxygen uptake (V̇O2max). Results: LV circumferential strain at all levels, LV twist and torsion, LV late diastolic longitudinal strain rate, RV peak longitudinal strain and RV early and late diastolic longitudinal strain rate were all lower in athletes than controls. On multivariable linear regression only LV torsion (beta=-0.37, P=0.03) had a significant association with LT. Only RV longitudinal late diastolic strain rate (beta=-0.35, P=0.03) had a significant association with V̇O2max. Conclusions: This cohort of endurance athletes had lower LV circumferential strain, LV torsion and biventricular diastolic strain rates than controls. Increased LT, which is a major determinant of performance in endurance athletes, was associated with decreased LV torsion. Further work is needed to understand the mechanisms by which this occurs

    Combined changes in Wnt signalling response and contact inhibition induce altered proliferation in radiation treated intestinal crypts

    Get PDF
    Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis
    corecore