2,114 research outputs found

    What limits supercurrents in high temperature superconductors? A microscopic model of cuprate grain boundaries

    Full text link
    The interface properties of high-temperature cuprate superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables, and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. In studies of single, artificially fabricated grain boundaries the striking observation has been made that the critical current Jc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behavior has been lacking. We present here the results of a microscopic evaluation based on a construction of fully 3D YBCO grain boundaries by molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for the d-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angle. We identify the buildup of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.Comment: 28 pages, 12 figure

    Assessment of the conservation priority status of South African estuaries for use in management and water allocation

    Get PDF
    The future health and productivity of South Africa's approximately 250 estuaries is dependent on two main factors: management and freshwater inputs. Both management and water allocation decisions involve trade-offs between conservation and various types of utilisation. In order to facilitate decision-making in both of these spheres, it is necessary to understand the relative conservation importance of different estuaries. This study devises a method for prioritising South African estuaries on the basis of conservation importance, and presents the results of a ranking based on the collation of existing data for all South African estuaries. Estuaries are scored in terms of their size, type and biogeographical zone, habitats and biota (plants, invertebrates, fish and birds). Thirtythree estuaries are currently under formal protection, but they are not representative of all estuarine biodiversity. We performed a complementarity analysis, incorporating data on abundance where available, to determine the minimum set of estuaries that includes all known species of plants, invertebrates, fishes and birds. In total, 32 estuaries were identified as 'required protected areas', including 10 which are already protected. An estuary's importance status (including 'required protected area' status) will influence the choice of management class and hence freshwater allocation under the country's new Water Act, and can be used to assist the development of a new management strategy for estuaries, which is currently underway. WaterSA Vol.28(2) 2002: 191-20

    Climate adaptation, drought susceptibility, and genomic-informed predictions of future climate refugia for the Australian forest tree Eucalyptus globulus

    Get PDF
    Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change

    Three dimensional evaluation of posture in standing with the PosturePrint: an intra- and inter-examiner reliability study

    Get PDF
    Abstract Background Few digitizers can measure the complexity of upright human postural displacements in six degrees of freedom of the head, rib cage, and pelvis. Methods In a University laboratory, three examiners performed delayed repeated postural measurements on forty subjects over two days. Three digital photographs (left lateral, AP, right lateral) of each of 40 volunteer participants were obtained, twice, by three examiners. Examiners placed 13 markers on the subjects before photography and chose 16 points on the photographic images. Using the PosturePrint® internet computer system, head, rib cage, and pelvic postures were calculated as rotations (Rx, Ry, Rz) in degrees and translations (Tx, Tz) in millimeters. For reliability, two different types (liberal = ICC3,1 & conservative = ICC2,1) of inter- and intra-examiner correlation coefficients (ICC) were calculated. Standard error of measurements (SEM) and mean absolute differences within and between observers' measurements were also determined. Results All of the "liberal" ICCs were in the excellent range (> 0.84). For the more "conservative" type ICCs, four Inter-examiner ICCs were in the interval (0.5–0.6), 10 ICCs were in the interval (0.61–0.74), and the remainder were greater than 0.75. SEMs were 2.7° or less for all rotations and 5.9 mm or less for all translations. Mean absolute differences within examiners and between examiners were 3.5° or less for all rotations and 8.4 mm or less for all translations. Conclusion For the PosturePrint® system, the combined inter-examiner and intra-examiner correlation coefficients were in the good (14/44) and excellent (30/44) ranges. SEMs and mean absolute differences within and between examiners' measurements were small. Thus, this posture digitizer is reliable for clinical use

    Efficient screening for ‘genetic pollution’ in an anthropogenic crested newt hybrid zone

    Get PDF
    Genetic admixture between endangered native and non-native invasive species poses a complex conservation problem. Decision makers often need to quickly screen large numbers of individuals and distinguish natives from morphologically similar invading species and their genetically admixed offspring. We describe a protocol using the fast and economical Kompetitive Allele Specific PCR (KASP) technology for genotyping on a large scale. We apply this protocol to a case study of hybridization between a native and an invasive crested newt species. Using previously published data, we designed a panel of ten nuclear and one mitochondrial diagnostic SNP markers. We observed only minor differences between KASP and next-generation sequencing data previously produced with the Ion Torrent platform. We briefly discuss practical considerations for tackling the insidious conservation problem of genetic admixture between native and invasive species. The KASP genotyping protocol facilitates policy decision making for the crested newt case and is generally applicable to invasive hybridization with endangered taxa

    Conceptualizing pathways linking women's empowerment and prematurity in developing countries.

    Get PDF
    BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed

    The Precursors and Products of Justice Climates: Group Leader Antecedents and Employee Attitudinal Consequences

    Get PDF
    Drawing on the organizational justice, organizational climate, leadership and personality, and social comparison theory literatures, we develop hypotheses about the effects of leader personality on the development of three types of justice climates (e.g., procedural, interpersonal, and informational), and the moderating effects of these climates on individual level justice- attitude relationships. Largely consistent with the theoretically-derived hypotheses, the results showed that leader (a) agreeableness was positively related to procedural, interpersonal and informational justice climates, (b) conscientiousness was positively related to a procedural justice climate, and (c) neuroticism was negatively related to all three types of justice climates. Further, consistent with social comparison theory, multilevel data analyses revealed that the relationship between individual justice perceptions and job attitudes (e.g., job satisfaction, commitment) was moderated by justice climate such that the relationships were stronger when justice climate was high

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    Beyond Climatic Variation: Human Disturbances Alter the Effectiveness of a Protected Area to Reduce Fires in a Tropical Peatland

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record. Publicly available datasets were analyzed in this study, with no new data collected. This data can be found here: https://id.weatherspark.com/h/y/149125/2015/Cuaca-Historis-selama-2015-di-Sultan-Mahmud-Badaruddin-II-Airport-Indonesia#Figures-Rainfall, www.openstreetmap.org, https://balaiksdasumsel.org/, https://tanahair.indonesia.go.id/portal-web, https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-datahttps://landsat.usgs.gov, and https://ggweather.com/enso/oni.htm.Fire is considered a major threat to biodiversity in many habitats and the occurrence of fire has frequently been used to investigate the effectiveness of protected areas. Yet, despite the known importance of tropical peatlands for biodiversity conservation and serious threat that anthropogenically induced fires pose to this ecosystem, the influence of protected area designation on fire occurrence in tropical peatland has been poorly assessed thus far. Our study addresses this knowledge gap through providing a novel assessment of fire patterns from a tropical peatland protected area and surrounding landscape. We investigated the importance of both climatic factors (top-down mechanism) and human interventions (bottom-up mechanism) on fire occurrence through analyzing 20-years (2001–2020) of LANDSAT and Moderate Resolution Imaging Spectrometer (MODIS) images of the Padang Sugihan Wildlife Reserve and a 10-km buffer area surrounding this in Sumatra, Indonesia. Fire density was assessed in relation to road and canal construction. Monthly and annual precipitation was compared between wet and dry years. The reserve was effective in limiting fire compared to surrounding landscapes only in wet years. We revealed that peat fire occurrence in the protected area and buffer zone was not due to climatic factors alone, with distance from canals and roads also contributing toward fire occurrence. Our results suggest that it is essential to address tropical peatland fire processes at a landscape level, particularly at the surroundings of protected areas, in order to increase the effectiveness of fire protection, improve fire risk classification maps, and conserve threatened tropical peatland wildlife such as the Sumatran elephant.UKRI GCRFThe Lembaga Pengelola Dana Pendidikan (LPDP)The Indonesian Science Fund (DIPI

    Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments

    Get PDF
    Most reports of a correlation between Pleistocene climate and geomagnetic field intensity rely strongly on the assumption that sediment natural remanent magnetic (NRM) intensity provides a record of geomagnetic field strength and is not sensitive to local changes in properties of the sediment. Critical assessment of relevant data presented here and elsewhere from deep-sea sediment cores shows that a pronounced dependence of NRM intensity on sediment composition can occur which implies that this assumption is unlikely to be generally valid. As sediment composition often reflects varying depositional conditions induced by climatic change, the significance of correlations proposed between Pleistocene palaeomagnetism and climatic indicators in deep-sea sediments may be less dramatic than sometimes supposed
    • …
    corecore