21 research outputs found

    Gaia FGK Benchmark Stars and their reference parameters

    Full text link
    In this article we summarise on-going work on the so-called Gaia FGK Benchmark Stars. This work consists of the determination of their atmospheric parameters and of the construction of a high-resolution spectral library. The definition of such a set of reference stars has become crucial in the current era of large spectroscopic surveys. Only with homogeneous and well documented stellar parameters can one exploit these surveys consistently and understand the structure and history of the Milky Way and therefore other of galaxies in the Universe.Comment: to appear in ASI Conference Series, 2014, Vol. 10 for the Workshop of Spectral Libraries held in Lyon, Oct. 201

    Test de la technique de marquage chimique avec des amas ouverts

    Get PDF
    Context. Stars are born together from giant molecular clouds and, if weassume that they were chemically homogeneous and well-mixed, we expect them toshare the same chemical composition.Most of the stellar aggregates are disrupted while orbiting the Galaxy and thedynamic information is lost, thus the only possibility to reconstruct the stellarformation history is to analyze the chemical abundances that we observe today.Aims. The chemical tagging technique aims to recover disrupted stellarclusters based merely on their chemical composition. We evaluate the viability of thistechnique to recover conatal stars that are not gravitationally bound anymore.Methods. We built a high-quality stellar spectra library to facilitate theassessment of spectral analyses. We developed our own spectral analysisframework, named iSpec, capable of homogeneizing stellar spectra and derivingatmospheric parameters/chemical abundances. Finally, we compiled stellar spectrafrom 32 Open Clusters, homogeneously derived atmospheric parameters and 17abundance species, and applied machine learning algorithms to group the starsbased on their chemical composition. This approach allows us to evaluate theviability of the chemical tagging technique.Results. We found that stars in different evolutionary stages havedistinguished chemical patterns may be due to NLTE effects, atomic diffusion, mixingand correlations from atmospheric parameter determinations. When separating starsper evolutionary stage, we observed a high degree of overlapping among OpenCluster’s chemical signatures, making it difficult to recover conatal aggregates byapplying the chemical tagging technique.Contexte. Les Ă©toiles naissent ensemble dans des nuages molĂ©culaires gĂ©ants. Si nous faisons l’hypothĂšse qu’ils Ă©taient Ă  l’origine chimiquement homogĂšnes et bien mĂ©langĂ©s, nous nous attendrions Ă  ce que les Ă©toiles issues d’un mĂȘme nuage aient la mĂȘme composition chimique. La plupart des groupes d’étoiles sont perturbĂ©s lors de leur Ă©volution dans la galaxie et l’information dynamique est perdue. Ainsi la seule possibilitĂ© que nous ayons de reconstruire l’histoire de la formation stellaire est d’analyser les abondances chimiques que l’on observe aujourd’hui.But. La technique de marquage chimique a pour but de retrouver les amas d’étoiles dissociĂ©s en se basant uniquement sur leur composition chimique. Nous Ă©valuons la viabilitĂ© de cette technique pour retrouver les Ă©toiles qui sont nĂ©es dans un mĂȘme amas mais qui ne sont plus gravitationnellement liĂ©es.MĂ©thodes. Nous avons crĂ©Ă© une librairie de spectres stellaires de haute qualitĂ© afin de faciliter l’évaluation des analyses spectrales. Nous avons dĂ©veloppĂ© notre propre outil d’analyse spectrale, nommĂ©e iSpec, capable d’homogĂ©nĂ©iser les spectres stellaires venant de tous types d’instruments et de dĂ©river les paramĂštres atmosphĂ©riques et les abondances chimiques. Finalement, nous avons compilĂ© des spectres stellaires d’étoiles de 32 amas ouverts, nous avons dĂ©rivĂ© de façon homogĂšne les paramĂštres atmosphĂ©riques et les abondances de 17 espĂšces, et nous avons utilisĂ© des algorithmes d’apprentissage automatique pour grouper les Ă©toiles en se basant sur leur composition chimique.RĂ©sultats. Nous avons trouvĂ© que les Ă©toiles Ă  des Ă©tapes d’évolution diffĂ©rentes ont des motifs chimiques distincts qui peuvent ĂȘtre dus Ă  des effets NLTE,de diffusion atomique, de mĂ©lange et de corrĂ©lation Ă  partir des dĂ©terminations de paramĂštres atmosphĂ©riques. Quand nous sĂ©parons les Ă©toiles suivant leur stade d’évolution, nous observons qu’il y a un important degrĂ© de recouvrement dans la dĂ©termination des signatures chimiques des amas ouverts. Ceci rend difficile de retrouver les groupes d’étoiles nĂ©es ensemble en utilisant la technique de marquage chimique

    On the influence of equilibrium tides on transit-timing variations of close-in super-Earths. I. Application to single-planet systems and the case of K2-265 b

    Full text link
    In this work, we investigate the influence of planetary tidal interactions on the transit-timing variations of short-period low-mass rocky exoplanets. For such purpose, we employ the recently-developed creep tide theory to compute tidally-induced TTVs. We implement the creep tide in the recently-developed Posidonius N-body code, thus allowing for a high-precision evolution of the coupled spin-orbit dynamics of planetary systems. As a working example for the analyses of tidally-induced TTVs, we apply our version of the code to the K2-265 b planet. We analyse the dependence of tidally-induced TTVs with the planetary rotation rate, uniform viscosity coefficient and eccentricity. Our results show that the tidally-induced TTVs are more significant in the case where the planet is trapped in non-synchronous spin-orbit resonances, in particular the 3/2 and 2/1 spin-orbit resonant states. An analysis of the TTVs induced separately by apsidal precession and tidally-induced orbital decay has allowed for the conclusion that the latter effect is much more efficient at causing high-amplitude TTVs than the former effect by 2 - 3 orders of magnitude. We compare our findings for the tidally-induced TTVs obtained with Posidonius with analytical formulations for the transit timings used in previous works, and verified that the results for the TTVs coming from Posidonius are in excellent agreement with the analytical formulations. These results show that the new version of Posidonius containing the creep tide theory implementation can be used to study more complex cases in the future. For instance, the code can be used to study multiplanetary systems, in which case planet-planet gravitational perturbations must be taken into account additionally to tidal interactions to obtain the TTVs.Comment: 12 pages, 9 figures. Accepted with minor revisions in Astronomy and Astrophysics (A&A

    New ADS Functionality for the Curator

    Full text link
    In this paper we provide an update concerning the operations of the NASA Astrophysics Data System (ADS), its services and user interface, and the content currently indexed in its database. As the primary information system used by researchers in Astronomy, the ADS aims to provide a comprehensive index of all scholarly resources appearing in the literature. With the current effort in our community to support data and software citations, we discuss what steps the ADS is taking to provide the needed infrastructure in collaboration with publishers and data providers. A new API provides access to the ADS search interface, metrics, and libraries allowing users to programmatically automate discovery and curation tasks. The new ADS interface supports a greater integration of content and services with a variety of partners, including ORCID claiming, indexing of SIMBAD objects, and article graphics from a variety of publishers. Finally, we highlight how librarians can facilitate the ingest of gray literature that they curate into our system.Comment: Submitted to the Proceedings of Library and Information Services in Astronomy VIII, Strasbourg, Franc

    TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star

    Get PDF
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 MJ\rm {M_J} (43.9 ± 7.3  M⊕\, M_{\rm \oplus}), a radius of RP = 0.639 ± 0.013 RJ\rm {R_J} (7.16 ± 0.15  R⊕\, \mathrm{ R}_{\rm \oplus}), bulk density of 0.65−0.11+0.120.65^{+0.12}_{-0.11} (cgs), and period 18.38818−0.00084+0.0008518.38818^{+0.00085}_{-0.00084} days\rm {days}. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 Msun\rm {M_{sun}}, R* = 1.888 ± 0.033 Rsun\rm {R_{sun}}, Teff = 6075 ± 90 K\rm {K}, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∌71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∌100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems

    Testing the chemical tagging technique with open clusters

    No full text
    Contexte. Les Ă©toiles naissent ensemble dans des nuages molĂ©culaires gĂ©ants. Si nous faisons l’hypothĂšse qu’ils Ă©taient Ă  l’origine chimiquement homogĂšnes et bien mĂ©langĂ©s, nous nous attendrions Ă  ce que les Ă©toiles issues d’un mĂȘme nuage aient la mĂȘme composition chimique. La plupart des groupes d’étoiles sont perturbĂ©s lors de leur Ă©volution dans la galaxie et l’information dynamique est perdue. Ainsi la seule possibilitĂ© que nous ayons de reconstruire l’histoire de la formation stellaire est d’analyser les abondances chimiques que l’on observe aujourd’hui.But. La technique de marquage chimique a pour but de retrouver les amas d’étoiles dissociĂ©s en se basant uniquement sur leur composition chimique. Nous Ă©valuons la viabilitĂ© de cette technique pour retrouver les Ă©toiles qui sont nĂ©es dans un mĂȘme amas mais qui ne sont plus gravitationnellement liĂ©es.MĂ©thodes. Nous avons crĂ©Ă© une librairie de spectres stellaires de haute qualitĂ© afin de faciliter l’évaluation des analyses spectrales. Nous avons dĂ©veloppĂ© notre propre outil d’analyse spectrale, nommĂ©e iSpec, capable d’homogĂ©nĂ©iser les spectres stellaires venant de tous types d’instruments et de dĂ©river les paramĂštres atmosphĂ©riques et les abondances chimiques. Finalement, nous avons compilĂ© des spectres stellaires d’étoiles de 32 amas ouverts, nous avons dĂ©rivĂ© de façon homogĂšne les paramĂštres atmosphĂ©riques et les abondances de 17 espĂšces, et nous avons utilisĂ© des algorithmes d’apprentissage automatique pour grouper les Ă©toiles en se basant sur leur composition chimique.RĂ©sultats. Nous avons trouvĂ© que les Ă©toiles Ă  des Ă©tapes d’évolution diffĂ©rentes ont des motifs chimiques distincts qui peuvent ĂȘtre dus Ă  des effets NLTE,de diffusion atomique, de mĂ©lange et de corrĂ©lation Ă  partir des dĂ©terminations de paramĂštres atmosphĂ©riques. Quand nous sĂ©parons les Ă©toiles suivant leur stade d’évolution, nous observons qu’il y a un important degrĂ© de recouvrement dans la dĂ©termination des signatures chimiques des amas ouverts. Ceci rend difficile de retrouver les groupes d’étoiles nĂ©es ensemble en utilisant la technique de marquage chimique.Context. Stars are born together from giant molecular clouds and, if weassume that they were chemically homogeneous and well-mixed, we expect them toshare the same chemical composition.Most of the stellar aggregates are disrupted while orbiting the Galaxy and thedynamic information is lost, thus the only possibility to reconstruct the stellarformation history is to analyze the chemical abundances that we observe today.Aims. The chemical tagging technique aims to recover disrupted stellarclusters based merely on their chemical composition. We evaluate the viability of thistechnique to recover conatal stars that are not gravitationally bound anymore.Methods. We built a high-quality stellar spectra library to facilitate theassessment of spectral analyses. We developed our own spectral analysisframework, named iSpec, capable of homogeneizing stellar spectra and derivingatmospheric parameters/chemical abundances. Finally, we compiled stellar spectrafrom 32 Open Clusters, homogeneously derived atmospheric parameters and 17abundance species, and applied machine learning algorithms to group the starsbased on their chemical composition. This approach allows us to evaluate theviability of the chemical tagging technique.Results. We found that stars in different evolutionary stages havedistinguished chemical patterns may be due to NLTE effects, atomic diffusion, mixingand correlations from atmospheric parameter determinations. When separating starsper evolutionary stage, we observed a high degree of overlapping among OpenCluster’s chemical signatures, making it difficult to recover conatal aggregates byapplying the chemical tagging technique

    Testing the chemical tagging technique with open clusters

    No full text
    Contexte. Les Ă©toiles naissent ensemble dans des nuages molĂ©culaires gĂ©ants. Si nous faisons l’hypothĂšse qu’ils Ă©taient Ă  l’origine chimiquement homogĂšnes et bien mĂ©langĂ©s, nous nous attendrions Ă  ce que les Ă©toiles issues d’un mĂȘme nuage aient la mĂȘme composition chimique. La plupart des groupes d’étoiles sont perturbĂ©s lors de leur Ă©volution dans la galaxie et l’information dynamique est perdue. Ainsi la seule possibilitĂ© que nous ayons de reconstruire l’histoire de la formation stellaire est d’analyser les abondances chimiques que l’on observe aujourd’hui.But. La technique de marquage chimique a pour but de retrouver les amas d’étoiles dissociĂ©s en se basant uniquement sur leur composition chimique. Nous Ă©valuons la viabilitĂ© de cette technique pour retrouver les Ă©toiles qui sont nĂ©es dans un mĂȘme amas mais qui ne sont plus gravitationnellement liĂ©es.MĂ©thodes. Nous avons crĂ©Ă© une librairie de spectres stellaires de haute qualitĂ© afin de faciliter l’évaluation des analyses spectrales. Nous avons dĂ©veloppĂ© notre propre outil d’analyse spectrale, nommĂ©e iSpec, capable d’homogĂ©nĂ©iser les spectres stellaires venant de tous types d’instruments et de dĂ©river les paramĂštres atmosphĂ©riques et les abondances chimiques. Finalement, nous avons compilĂ© des spectres stellaires d’étoiles de 32 amas ouverts, nous avons dĂ©rivĂ© de façon homogĂšne les paramĂštres atmosphĂ©riques et les abondances de 17 espĂšces, et nous avons utilisĂ© des algorithmes d’apprentissage automatique pour grouper les Ă©toiles en se basant sur leur composition chimique.RĂ©sultats. Nous avons trouvĂ© que les Ă©toiles Ă  des Ă©tapes d’évolution diffĂ©rentes ont des motifs chimiques distincts qui peuvent ĂȘtre dus Ă  des effets NLTE,de diffusion atomique, de mĂ©lange et de corrĂ©lation Ă  partir des dĂ©terminations de paramĂštres atmosphĂ©riques. Quand nous sĂ©parons les Ă©toiles suivant leur stade d’évolution, nous observons qu’il y a un important degrĂ© de recouvrement dans la dĂ©termination des signatures chimiques des amas ouverts. Ceci rend difficile de retrouver les groupes d’étoiles nĂ©es ensemble en utilisant la technique de marquage chimique.Context. Stars are born together from giant molecular clouds and, if weassume that they were chemically homogeneous and well-mixed, we expect them toshare the same chemical composition.Most of the stellar aggregates are disrupted while orbiting the Galaxy and thedynamic information is lost, thus the only possibility to reconstruct the stellarformation history is to analyze the chemical abundances that we observe today.Aims. The chemical tagging technique aims to recover disrupted stellarclusters based merely on their chemical composition. We evaluate the viability of thistechnique to recover conatal stars that are not gravitationally bound anymore.Methods. We built a high-quality stellar spectra library to facilitate theassessment of spectral analyses. We developed our own spectral analysisframework, named iSpec, capable of homogeneizing stellar spectra and derivingatmospheric parameters/chemical abundances. Finally, we compiled stellar spectrafrom 32 Open Clusters, homogeneously derived atmospheric parameters and 17abundance species, and applied machine learning algorithms to group the starsbased on their chemical composition. This approach allows us to evaluate theviability of the chemical tagging technique.Results. We found that stars in different evolutionary stages havedistinguished chemical patterns may be due to NLTE effects, atomic diffusion, mixingand correlations from atmospheric parameter determinations. When separating starsper evolutionary stage, we observed a high degree of overlapping among OpenCluster’s chemical signatures, making it difficult to recover conatal aggregates byapplying the chemical tagging technique
    corecore