56 research outputs found

    Disparities in healthy food zoning, farmers’ market availability, and fruit and vegetable consumption among North Carolina residents

    Get PDF
    Background Context and purpose of the study. To examine (1) associations between county-level zoning to support farmers’ market placement and county-level farmers’ market availability, rural/urban designation, percent African American residents, and percent of residents living below poverty and (2) individual-level associations between zoning to support farmers’ markets; fruit and vegetable consumption and body mass index (BMI) among a random sample of residents of six North Carolina (NC) counties. Methods Zoning ordinances were scored to indicate supportiveness for healthy food outlets. Number of farmers’ markets (per capita) was obtained from the NC-Community Transformation Grant Project Fruit and Vegetable Outlet Inventory (2013). County-level census data on rural/urban status, percent African American, and percent poverty were obtained. For data on farmers’ market shopping, fruit and vegetable consumption, and BMI, trained interviewers conducted a random digit dial telephone survey of residents of six NC counties (3 urban and 3 rural). Pearson correlation coefficients and multilevel linear regression models were used to examine county-level and individual-level associations between zoning supportiveness, farmers’ market availability, and fruit and vegetable consumption and BMI. Results At the county-level, healthier food zoning was greater in more urban areas and areas with less poverty. At the individual-level, self-reported fruit and vegetable consumption was associated with healthier food zoning. Conclusions Disparities in zoning to promote healthy eating should be further examined, and future studies should assess whether amending zoning ordinances will lead to greater availability of healthy foods and changes in dietary behavior and health outcomes.ECU Open Access Publishing Support Fun

    Does home neighbourhood supportiveness influence the location more than volume of adolescent's physical activity? An observational study using Global Positioning Systems

    Get PDF
    Background: Environmental characteristics of home neighbourhoods are hypothesised to be associated with residents’ physical activity levels, yet many studies report only weak or equivocal associations. We theorise that this may be because neighbourhood characteristics influence the location of activity more than the volume. Using a sample of UK adolescents, we examine the role of home neighbourhood supportiveness for physical activity, both in terms of volume of activity undertaken and a measure of proximity to home at which activity takes place. Methods: Data were analysed from 967 adolescents living in and around the city of Bristol, UK. Each participant wore an accelerometer and a GPS device for seven days during school term time. These data were integrated into a Geographical Information System containing information on the participants’ home neighbourhoods and measures of environmental supportiveness. We then identified the amount of out-of-school activity of different intensities that adolescents undertook inside their home neighbourhood and examined how this related to home neighbourhood supportiveness. Results: We found that living in a less supportive neighbourhood did not negatively impact the volume of physical activity that adolescents undertook. Indeed these participants recorded similar amounts of activity (e.g. 20.5 mins per day of moderate activity at weekends) as those in more supportive neighbourhoods (18.6 mins per day). However, the amount of activity adolescents undertook inside their home neighbourhood did differ according to supportiveness; those living in less supportive locations had lower odds of recording activity inside their home neighbourhood. This was observed across all intensities of activity including sedentary, light, moderate, and vigorous. Conclusions: Our findings suggest that the supportiveness of the neighbourhood around home may have a greater influence on the location of physical activity than the volume undertaken. This finding is at odds with the premise of the socio-ecological models of physical activity that have driven this research field for the last two decades, and has implications for future research, as by simply measuring volumes of activity we may be underestimating the impact of the environment on physical activity behaviours

    Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso

    Get PDF
    Background: Predation of aquatic immature stages has been identified as a major evolutionary force driving habitat segregation and niche partitioning in the malaria mosquito Anopheles gambiae sensu stricto in the humid savannahs of Burkina Faso, West Africa. Here, we explored behavioural responses to the presence of a predator in wild populations of the M and S molecular forms of An. gambiae that typically breed in permanent (e.g., rice field paddies) and temporary (e.g., road ruts) water collections. Methods: Larvae used in these experiments were obtained from eggs laid by wild female An. gambiae collected from two localities in south-western Burkina Faso during the 2008 rainy season. Single larvae were observed in an experimental arena, and behavioural traits were recorded and quantified a) in the absence of a predator and b) in the presence of a widespread mosquito predator, the backswimmer Anisops jaczewskii. Differences in the proportion of time allocated to each behaviour were assessed using Principal Component Analysis and Multivariate Analysis of Variance. Results: The behaviour of M and S form larvae was found to differ significantly; although both forms mainly foraged at the water surface, spending 60-90% of their time filtering water at the surface or along the wall of the container, M form larvae spent on average significantly more time browsing at the bottom of the container than S form larvae (4.5 vs. 1.3% of their overall time, respectively; P < 0.05). In the presence of a predator, larvae of both forms modified their behaviour, spending significantly more time resting along the container wall (P < 0.001). This change in behaviour was at least twice as great in the M form (from 38.6 to 66.6% of the time at the wall in the absence and presence of the predator, respectively) than in the S form (from 48.3 to 64.1%). Thrashing at the water surface exposed larvae to a significantly greater risk of predation by the notonectid (P < 0.01), whereas predation occurred significantly less often when larvae were at the container wall (P < 0.05) and might reflect predator vigilance. Conclusions: Behavioural differences between larvae of the M and S form of An. gambiae in response to an acute predation risk is likely to be a reflection of different trade-offs between foraging and predator vigilance that might be of adaptive value in contrasting aquatic ecosystems. Future studies should explore the relevance of these findings under the wide range of natural settings where both forms co-exist in Africa

    The “Far-West” of Anopheles gambiae Molecular Forms

    Get PDF
    The main Afrotropical malaria vector, Anopheles gambiae sensu stricto, is undergoing a process of sympatric ecological diversification leading to at least two incipient species (the M and S molecular forms) showing heterogeneous levels of divergence across the genome. The physically unlinked centromeric regions on all three chromosomes of these closely related taxa contain fixed nucleotide differences which have been found in nearly complete linkage disequilibrium in geographic areas of no or low M-S hybridization. Assays diagnostic for SNP and structural differences between M and S forms in the three centromeric regions were applied in samples from the western extreme of their range of sympatry, the only area where high frequencies of putative M/S hybrids have been reported. The results reveal a level of admixture not observed in the rest of the range. In particular, we found: i) heterozygous genotypes at each marker, although at frequencies lower than expected under panmixia; ii) virtually all possible genotypic combinations between markers on different chromosomes, although genetic association was nevertheless detected; iii) discordant M and S genotypes at two X-linked markers near the centromere, suggestive of introgression and inter-locus recombination. These results could be indicative either of a secondary contact zone between M and S, or of the maintenance of ancestral polymorphisms. This issue and the perspectives opened by these results in the study of the M and S incipient speciation process are discussed

    Does Speciation between Arabidopsis halleri and Arabidopsis lyrata Coincide with Major Changes in a Molecular Target of Adaptation?

    Get PDF
    Ever since Darwin proposed natural selection as the driving force for the origin of species, the role of adaptive processes in speciation has remained controversial. In particular, a largely unsolved issue is whether key divergent ecological adaptations are associated with speciation events or evolve secondarily within sister species after the split. The plant Arabidopsis halleri is one of the few species able to colonize soils highly enriched in zinc and cadmium. Recent advances in the molecular genetics of adaptation show that the physiology of this derived ecological trait involves copy number expansions of the AhHMA4 gene, for which orthologs are found in single copy in the closely related A. lyrata and the outgroup A. thaliana. To gain insight into the speciation process, we ask whether adaptive molecular changes at this candidate gene were contemporary with important stages of the speciation process. We first inferred the scenario and timescale of speciation by comparing patterns of variation across the genomic backgrounds of A. halleri and A. lyrata. Then, we estimated the timing of the first duplication of AhHMA4 in A. halleri. Our analysis suggests that the historical split between the two species closely coincides with major changes in this molecular target of adaptation in the A. halleri lineage. These results clearly indicate that these changes evolved in A. halleri well before industrial activities fostered the spread of Zn- and Cd-polluted areas, and suggest that adaptive processes related to heavy-metal homeostasis played a major role in the speciation process

    Fasting Induces the Expression of PGC-1α and ERR Isoforms in the Outer Stripe of the Outer Medulla (OSOM) of the Mouse Kidney

    Get PDF
    Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is a member of the transcriptional coactivator family that plays a central role in the regulation of cellular energy metabolism under various physiological stimuli. During fasting, PGC-1α is induced in the liver and together with estrogen-related receptor a and γ (ERRα and ERRγ, orphan nuclear receptors with no known endogenous ligand, regulate sets of genes that participate in the energy balance program. We found that PGC-1α, ERRα and ERRγ was highly expressed in human kidney HK2 cells and that PGC-1α induced dynamic protein interactions on the ERRα chromatin. However, the effect of fasting on the expression of endogenous PGC-1α, ERRα and ERRγ in the kidney is not known.In this study, we demonstrated by qPCR that the expression of PGC-1α, ERRα and ERRγ was increased in the mouse kidney after fasting. By using immunohistochemistry (IHC), we showed these three proteins are co-localized in the outer stripe of the outer medulla (OSOM) of the mouse kidney. We were able to collect this region from the kidney using the Laser Capture Microdissection (LCM) technique. The qPCR data showed significant increase of PGC-1α, ERRα and ERRγ mRNA in the LCM samples after fasting for 24 hours. Furthermore, the known ERRα target genes, mitochondrial oxidative phosphorylation gene COX8H and the tricarboxylic acid (TCA) cycle gene IDH3A also showed an increase. Taken together, our data suggest that fasting activates the energy balance program in the OSOM of the kidney

    Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

    Get PDF
    Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs

    Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects

    Get PDF
    The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse (‘speciation in reverse’). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this ‘niche dimensionality’ hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature
    corecore