166 research outputs found

    Landscape Changes Influence the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Soil in Northern Australia

    Get PDF
    Melioidosis is a severe disease affecting humans and animals in the tropics. It is caused by the bacterium Burkholderia pseudomallei, which lives in tropical soil and especially occurs in southeast Asia and northern Australia. Despite the recognition that melioidosis is an emerging infectious disease, little is known about the habitat of B. pseudomallei in the environment. We performed a survey in the Darwin area in tropical Australia, screening 809 soil samples for the presence of these bacteria using molecular methods. We found that environmental factors describing the habitat of these bacteria differed between environmentally undisturbed and disturbed sites. At undisturbed sites, B. pseudomallei was primarily found in close proximity to streams and in grass- and roots-rich areas. In disturbed soil, B. pseudomallei was associated with the presence of animals, farming or irrigation. Highest B. pseudomallei counts were retrieved from paddocks, pens and kennels holding livestock and dogs. This study contributes to the elucidation of the habitat of B. pseudomallei in northern Australia. It also raises concerns that B. pseudomallei may spread due to changes in land management

    No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men.

    Get PDF
    During whole-body exercise in health, maximal oxygen uptake (V̇O2max) is typically attained at or immediately prior to the limit of tolerance (LoT). At the V̇O2max and LoT of incremental exercise, a fundamental, but unresolved, question is whether maximal evocable power can increase above the task requirement, i.e. whether there is a "power reserve" at the LoT. Using an instantaneous switch from cadence-independent to isokinetic cycle ergometry, we determined maximal evocable power at the limit of ramp-incremental exercise. We hypothesized that in endurance-trained men at LoT, maximal (4s) isokinetic power would not differ from power required by the task. Baseline isokinetic power at 80rpm (PISO; measured at the pedals) and summed integrated EMG from 5 leg muscles (∑iEMG) were measured in 12 endurance-trained men (V̇O2max=4.2±1.0 l•min(-1)). Participants then completed a ramp-incremental exercise test (20-25W•min(-1)), with instantaneous measurement of PISO and ∑iEMG at the LoT. PISO decreased from 788±103W at baseline to 391±72W at LoT, which was not different from the required ramp-incremental flywheel power (352±58W; p>0.05). At LoT, the relative reduction in PISO was greater than the relative reduction in the isokinetic ∑iEMG (50±9 vs. 63±10% of baseline; p<0.05). During maximal ramp incremental exercise in endurance-trained men, maximum voluntary power is not different from the power required by the task, and is consequent to both central and peripheral limitations in evocable power. The absence of a power reserve suggests both the perceptual and physiological limits of maximum voluntary power production are not widely dissociated at LoT in this population

    The influence of body weight on the pulmonary oxygen uptake kinetics in pre-pubertal children during moderate- and heavy intensity treadmill exercise

    Get PDF
    To assess the influence of obesity on the oxygen uptake (V˙O2) kinetics of pre-pubertal children during moderate- and heavy intensity treadmill exercise. We hypothesised that obese (OB) children would demonstrate significantly slower V˙O2 kinetics than their normal weight (NW) counterparts during moderate- and heavy intensity exercise. 18 OB (9.8 ± 0.5 years; 24.1 ± 2.0 kg m2) and 19 NW (9.7 ± 0.5 years; 17.6 ± 1.0 kg m2) children completed a graded-exercise test to volitional exhaustion and two submaximal constant work rate treadmill tests at moderate (90 % gas exchange threshold) and heavy (∆40 %) exercise intensities. Bodyweight significantly influenced the V˙O2 kinetics during both moderate- and heavy exercise intensities (P < 0.05). During moderate intensity exercise, the phase II τ (OB: 30 ± 13 cf. NW: 22 ± 7 s), mean response time (MRT; OB: 35 ± 16 cf. NW: 25 ± 10 s), phase II gain (OB: 156 ± 21 cf. NW: 111 ± 18 mLO2 kg−1 km−1) and oxygen deficit (OB: 0.36 ± 0.11 cf. NW: 0.20 ± 0.06 L) were significantly higher in the OB children (all P < 0.05). During heavy intensity exercise, the τ (OB: 33 ± 9 cf. NW: 27 ± 6 s; P < 0.05) and phase II gain (OB: 212 ± 61 cf. NW: 163 ± 23 mLO2 kg−1 km−1; P < 0.05) were similarly higher in the OB children. A slow component was observed in all participants during heavy intensity exercise, but was not influenced by weight status. In conclusion, this study demonstrates that weight status significantly influences the dynamic V˙O2 response at the onset of treadmill exercise in children and highlights that the deleterious effects of being obese are already manifest pre-puberty

    Data collection, handling and fitting strategies to optimize accuracy and precision of oxygen uptake kinetics estimation from breath-by-breath measurements.

    Get PDF
    Phase 2 pulmonary oxygen uptake kinetics (ϕ2 τVO2P) reflect muscle oxygen consumption dynamics and are sensitive to changes in state of training or health. This study identified an unbiased method for data collection, handling and fitting to optimize VO2P kinetics estimation. A validated computational model of VO2P kinetics and a Monte Carlo approach simulated 2 x 10(5) moderate intensity transitions using a distribution of metabolic and circulatory parameters spanning normal health. Effects of averaging (interpolation, binning, stacking or separate fitting of up to 10 transitions) and fitting procedures (bi-exponential fitting, or ϕ2 isolation by time removal, statistical or derivative methods followed by mono-exponential fitting) on accuracy and precision of ϕ2 τVO2P estimation were assessed. The optimal strategy to maximize accuracy and precision of τVO2P estimation was 1-s interpolation of 4 bouts, ensemble averaged, with the first 20 s of exercise data removed. Contradictory to previous advice, we found optimal fitting procedures removed no more than 20 s of ϕ1 data. Averaging method was less critical: interpolation, bin averaging and stacking gave similar results, each with greater accuracy compared to analyzing repeated bouts separately. The optimal procedure resulted in ϕ2 τVO2P estimates for transitions from an unloaded or loaded baseline that averaged 1.97±2.08 and 1.04±2.30 s from true, but were within 2 s of true in only 47-62% of simulations. Optimized 95% confidence intervals for τVO2P ranged from 4.08-4.51 s, suggesting a minimally important difference of ~5 s to determine significant changes in τVO2P during interventional and comparative studies

    Pulmonary oxygen uptake and muscle deoxygenation kinetics during recovery in trained and untrained male adolescents

    Get PDF
    Previous studies have demonstrated faster pulmonary oxygen uptake ( V ˙ O 2 ) kinetics in the trained state during the transition to and from moderate-intensity exercise in adults. Whilst a similar effect of training status has previously been observed during the on-transition in adolescents, whether this is also observed during recovery from exercise is presently unknown. The aim of the present study was therefore to examine V ˙ O 2 kinetics in trained and untrained male adolescents during recovery from moderate-intensity exercise. 15 trained (15 ± 0.8 years, V ˙ O 2max 54.9 ± 6.4 mL kg−1 min−1) and 8 untrained (15 ± 0.5 years, V ˙ O 2max 44.0 ± 4.6 mL kg−1 min−1) male adolescents performed two 6-min exercise off-transitions to 10 W from a preceding “baseline” of exercise at a workload equivalent to 80% lactate threshold; V ˙ O 2 (breath-by-breath) and muscle deoxyhaemoglobin (near-infrared spectroscopy) were measured continuously. The time constant of the fundamental phase of V ˙ O 2 off-kinetics was not different between trained and untrained (trained 27.8 ± 5.9 s vs. untrained 28.9 ± 7.6 s, P = 0.71). However, the time constant (trained 17.0 ± 7.5 s vs. untrained 32 ± 11 s, P < 0.01) and mean response time (trained 24.2 ± 9.2 s vs. untrained 34 ± 13 s, P = 0.05) of muscle deoxyhaemoglobin off-kinetics was faster in the trained subjects compared to the untrained subjects. V ˙ O 2 kinetics was unaffected by training status; the faster muscle deoxyhaemoglobin kinetics in the trained subjects thus indicates slower blood flow kinetics during recovery from exercise compared to the untrained subjects

    Social work and gender::An argument for practical accounts

    Get PDF
    This article contributes to the debate on gender and social work by examining dominant approaches within the field. Anti-discriminatory, woman-centered and intersectional accounts are critiqued for reliance upon both reification and isolation of gender. Via examination of poststructural, queer and trans theories within social work, the author then presents accounts based upon structural/materialist, ethnomethodological and discursive theories, in order to open up debates about conceptualization of gender. These are used to suggest that social work should adopt a focus on gender as a practical accomplishment that occurs within various settings or contexts

    Mechanisms of attenuation of pulmonary V'O_{2} slow component in humans after prolonged endurance training

    Get PDF
    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2 ) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean\ub1SD: age 22.33\ub11.44 years, V'O2peak 3198\ub1458 mL \ub7 min-1 ) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by 3c5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of \u3c4 p of the V'O2 on-kinetics (30.1\ub15.9 s vs. 25.4\ub11.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by 3c5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the "additional" ATP usage rising gradually during heavy-intensity exercise

    Oxygen uptake kinetics in trained adolescent females

    Get PDF
    Little evidence exists with regard to the effect that exercise training has upon oxygen uptake kinetics in adolescent females. PURPOSE: The aim of the study was to compare [Formula: see text] and muscle deoxygenation kinetics in a group of trained (Tr) and untrained (Utr) female adolescents. METHOD: Twelve trained (6.4 ± 0.9 years training, 10.3 ± 1.4 months per year training, 5.2 ± 2.0 h per week) adolescent female soccer players (age 14.6 ± 0.7 years) were compared to a group (n = 8) of recreationally active adolescent girls (age 15.1 ± 0.6 years) of similar maturity status. Subjects underwent two, 6-min exercise transitions at a workload equivalent to 80 % of lactate threshold from a 3-min baseline of 10 W. All subjects had a passive rest period of 1 h between each square-wave transition. Breath-by-breath oxygen uptake and muscle deoxygenation were measured throughout and were modelled via a mono-exponential decay with a delay relative to the start of exercise. RESULT: Peak [Formula: see text] was significantly (p < 0.05) greater in the Tr compared to the Utr (Tr: 43.2 ± 3.2 mL kg(-1 )min(-1) vs. Utr: 34.6 ± 4.0 mL kg(-1 )min(-1)). The [Formula: see text] time constant was significantly (p < 0.05) faster in the Tr compared to the Utr (Tr: 26.3 ± 6.9 s vs. Utr: 35.1 ± 11.5 s). There was no inter-group difference in the time constant for muscle deoxygenation kinetics (Tr: 8.5 ± 3.0 s vs. Utr: 12.4 ± 8.3 s); a large effect size, however, was demonstrated (-0.804). CONCLUSION: Exercise training and/or genetic self-selection results in faster kinetics in trained adolescent females. The faster [Formula: see text] kinetics seen in the trained group may result from enhanced muscle oxygen utilisation

    Relationship between cardiac deformation parameters measured by cardiovascular magnetic resonance and aerobic fitness in endurance athletes

    Get PDF
    Background: Athletic training leads to remodelling of both left and right ventricles with increased myocardial mass and cavity dilatation. Whether changes in cardiac strain parameters occur in response to training is less well established. In this study we investigated the relationship in trained athletes between cardiovascular magnetic resonance (CMR) derived strain parameters of cardiac function and fitness. Methods: 35 endurance athletes and 35 age and sex matched controls underwent CMR at 3.0T including cine imaging in multiple planes and tissue tagging by spatial modulation of magnetization (SPAMM). CMR data were analysed quantitatively reporting circumferential strain and torsion from tagged images and left and right ventricular longitudinal strain from feature tracking of cine images. Athletes performed a maximal ramp-incremental exercise test to determine the lactate threshold (LT) and maximal oxygen uptake (V̇O2max). Results: LV circumferential strain at all levels, LV twist and torsion, LV late diastolic longitudinal strain rate, RV peak longitudinal strain and RV early and late diastolic longitudinal strain rate were all lower in athletes than controls. On multivariable linear regression only LV torsion (beta=-0.37, P=0.03) had a significant association with LT. Only RV longitudinal late diastolic strain rate (beta=-0.35, P=0.03) had a significant association with V̇O2max. Conclusions: This cohort of endurance athletes had lower LV circumferential strain, LV torsion and biventricular diastolic strain rates than controls. Increased LT, which is a major determinant of performance in endurance athletes, was associated with decreased LV torsion. Further work is needed to understand the mechanisms by which this occurs
    corecore