48 research outputs found

    Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma

    Get PDF
    The last 10 years have seen enormous progress in the field of paraganglioma and pheochromocytoma genetics. The identification of the first gene related to paraganglioma, SDHD, encoding a subunit of mitochondrial succinate dehydrogenase (SDH), was quickly followed by the identification of mutations in SDHC and SDHB. Very recently several new SDH-related genes have been discovered. The SDHAF2 gene encodes an SDH co-factor related to the function of the SDHA subunit, and is currently exclusively associated with head and neck paragangliomas. SDHA itself has now also been identified as a paraganglioma gene, with the recent identification of the first mutation in a patient with extra-adrenal paraganglioma. Another SDH-related co-factor, SDHAF1, is not currently known to be a tumor suppressor, but may shed some light on the mechanisms of tumorigenesis. An entirely novel gene associated with adrenal pheochromocytoma, TMEM127, suggests that other new paraganglioma susceptibility genes may await discovery. In addition to these recent discoveries, new techniques related to mutation analysis, including genetic analysis algorithms, SDHB immunohistochemistry, and deletion analysis by MLPA have improved the efficiency and accuracy of genetic analysis. However, many intriguing questions remain, such as the striking differences in the clinical phenotype of genes that encode proteins with an apparently very close functional relationship, and the lack of expression of SDHD and SDHAF2 mutations when inherited via the maternal line. Little is still known of the origins and causes of truly sporadic tumors, and the role of oxygen in the relationships between high-altitude, familial and truly sporadic paragangliomas remains to be elucidated

    Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone

    Get PDF
    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15:0 and C17:1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus

    Activity variations attending tungsten skarn formation, Pine Creek, California

    Full text link
    An integrated geochemical analysis of the well-exposed Pine Creek, California tungsten skarn deposit has been undertaken to evaluate changes in chemical gradients across various lithologies. Thermodynamic calculations using available experimental and thermodynamic data allow limits to be assigned to the activities of important chemical components in the metasomatic environment. Quantifiable changes in “non-volatile” component activites (CaO, MgO, Al 2 O 3 , Fe 2 O 3 , WO 3 ) and in fugacities (O 2 , F 2 ) have been traced across the system. The activities of Al 2 O 3 , Fe 2 O 3 and WO 3 generally increase from the marble (<10 2 , <10 −6 , <10 −5 respectively), through the outer skarn zone and into the massive garnet skarn (10 −1.7±0.3 , 10 −3.4±0.4 , 10 −4.8±0.1 ) While CaO and MgO activities decrease for the same traverse from 10 −5 and 10 −2.1±1 respectively, to <10 −5.7 and <10 −3 . Calculated oxygen fugacities are 10 −23.5+1.0 at T =800 K (527° C), about one log unit below QFM, and more reducing than that required by Mt-Py-Po. The high variance of the garnet-pyroxene-quartz assemblages adds sufficient uncertainty to the calculated activities for individual specimens that only the large-scale trends survive the small-scale scatter. None of the chemical variables emerge as major independent or controlling factors for the mineralogy or phase compositions. Changes in the activity of one component may be offset by compensatory changes in another resulting in an environment that, while different from Pine Creek, could still host scheelite mineralization. Mass balance calculations indicate that the exposed endoskarn cannot have supplied the necessary chemical components to convert the country rock to skarn.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47341/1/410_2004_Article_BF00381557.pd

    INDUCTION OF ANTIVIRAL IMMUNE-RESPONSES BY IMMUNIZATION WITH RECOMBINANT-DNA ENCODED AVIAN CORONAVIRUS NUCLEOCAPSID PROTEIN

    No full text
    Immune responses to the infectious bronchitis virus (IBV) nucleocapsid protein were studied using a recombinant-DNA expression product. In mice, a lymphocyte proliferative response and a delayed-type hypersensitivity reaction to IBV were induced upon immunization with this nucleocapsid protein. Next, we studied the role of the expressed nucleocapsid protein in induction of a protective immune response to IBV in chickens. Chickens were primed with nucleocapsid protein and subsequently boosted with inactivated IBV, strain M41. Proliferative responses of blood mononuclear cells corresponded with increased mean haemagglutination inhibition and virus neutralization titres. Finally, an increased tracheal protection against challenge with live IBV was observed. These results indicate that infectious bronchitis virus nucleocapsid protein is a relevant target for immune recognition in both the mouse and the chicken

    Reduced damage threshold for tungsten using combined steady state and transient sources

    Get PDF
    Divertor wall materials in future fusion devices will be subject to both high flux steady state plasma and transient ELM striking which could limit the lifetime of these plasma facing materials. A pulsed plasma source was therefore developed to reproduce these conditions. Laser irradiation of similar pulse length has been used to disambiguate between the effects of particle and heat loads compared with transient heating alone. A lowered threshold for damage of tungsten was observed in the case of simultaneous transient and steady state loads compared to transients alone, while surface damage was also enhanced with repeated laser irradiation following steady plasma exposure, compared to the two processes individually, indicating a synergistic enhancement of surface modification due to plasma exposure
    corecore