264 research outputs found

    Identification and characterisation of a novel, multi-potent, skeletal muscle-derived stem cell with broad developmental plasticity

    Get PDF
    PW1+/Pax7– skeletal muscle-derived interstitial progenitor cells (PICs) are myogenic in vitro, efficiently contribute to skeletal muscle regeneration in vivo, and are self-renewing in vivo whilst also giving rise to satellite cells (Mitchell et al. 2010). They have previously been identified in the mouse and pig and are bi-potent forming both smooth and skeletal muscle (Mitchell et al. 2010, Lewis et al. 2014). This study characterised murine PICs for stem cell properties of self-renewal, clonogenicity and multipotency. Furthermore, PW1 expression was assessed in cardiac tissue, and in an isolated Sca1+ cardiac stem cell population. Satellite cells and PICs were identified and quantified in hind limb skeletal muscle of 3, 10 and 21 day, and 2 year old mice: there was a decline in abundance of both SC and PICs with age. PICs were isolated by MACS technology from hind limb murine skeletal muscle of 21 day old mice, and their phenotype characterised. Isolated PICs expressed markers of pluripotency; Oct3/4, Sox2 and Nanog, were clonogenic and self- renewing over >60 population doublings in vitro, with a population doubling time of 15.8±2.9 hours. Furthermore, PICs demonstrated multipotency both in vitro and in vivo giving rise to cell types from the 3 germ layers. PW1+ cells were identified and quantified with respect to location in the heart on 3, 10 day, 21 day and 2 year old mice with the majority of cells found within the epicardium. There was rapid decline in abundance during postnatal development. CD45-/Sca-1+ CSCs were isolated from 6 week old mice via MACS technology and assessed for PW1 expression (83%). In summary, this study showed PICs have broad developmental plasticity both in vitro and in vivo, and can be propagated and maintained in a primitive state in culture. Furthermore, PW1 also marks a stem cell population within the heart. These data opens new avenues for solid tissue engineering and regeneration utilising a single multi-potent stem cell type, isolated from an easily accessible source such as skeletal muscle

    Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining

    Get PDF
    Intensity‐controlled (relative to VO2max) treadmill exercise training in adult rats results in the activation and ensuing differentiation of endogenous c‐kitpos cardiac stem/progenitor cells (eCSCs) into newly formed cardiomyocytes and capillaries. Whether these training‐induced adaptations persist following detraining is undetermined. Twelve male Wistar rats (~230 g) were exercised at 80–85% of their VO2max for 30 min day−1, 4 days week−1 for 4 weeks (TR; n = 6), followed by 4 weeks of detraining (DTR; n = 6). Twelve untrained rats acted as controls (CTRL). Exercise training significantly enhanced VO2max (11.34 mL kg−1 min−1) and wet heart weight (29%) above CTRL (P < 0.05). Echocardiography revealed that exercise training increased LV mass (~32%), posterior and septal wall thickness (~15%), ejection fraction and fractional shortening (~10%) compared to CTRL (P < 0.05). Cardiomyocyte diameter (17.9 ± 0.1 μm vs. 14.9 ± 0.6 μm), newly formed (BrdUpos/Ki67pos) cardiomyocytes (7.2 ± 1.3%/1.9 ± 0.7% vs. 0.2 ± 0.1%/0.1 ± 0.1%), total cardiomyocyte number (45.6 ± 0.6 × 106 vs. 42.5 ± 0.4 × 106), c‐kitpos eCSC number (884 ± 112 per 106 cardiomyocytes vs. 482 ± 132 per 106 cardiomyocytes), and capillary density (4123 ± 227 per mm2 vs. 2117 ± 118 per mm2) were significantly greater in the LV of trained animals (P < 0.05) than CTRL. Detraining removed the stimulus for c‐kitpos eCSC activation (640 ± 98 per 106 cardiomyocytes) and resultant cardiomyocyte hyperplasia (0.4 ± 0.3% BrdUpos/0.2 ± 0.2% Ki67pos cardiomyocytes). Capillary density (3673 ± 374 per mm2) and total myocyte number (44.7 ± 0.5 × 106) remained elevated following detraining, but cardiomyocyte hypertrophy (15.0 ± 0.4 μm) was lost, resulting in a reduction of anatomical (wall thickness ~4%; LV mass ~10% and cardiac mass ~8%, above CTRL) and functional (EF & FS ~2% above CTRL) parameters gained through exercise training. These findings demonstrate that cardiac adaptations, produced by 4 weeks of intensity‐controlled exercise training are lost after a similar period of detraining

    Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing and multi-potent in vitro and in vivo.

    Get PDF
    European Research Council, European Community 7th Framework project ENDOSTEM (contract number FP7-Health-2009-ENDOSTEM 241440 (Activation of vasculature-associated stem cells and muscle stem cells for the repair and maintenance of muscle tissue)

    Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in <it>MYBPC3 </it>encoding myosin binding protein C belong to the most frequent causes of hypertrophic cardiomyopathy (HCM) and may also lead to dilated cardiomyopathy (DCM). <it>MYBPC3 </it>mutations initially were considered to cause a benign form of HCM. The aim of this study was to examine the clinical outcome of patients and their relatives with 18 different <it>MYBPC3 </it>mutations.</p> <p>Methods</p> <p>87 patients with HCM and 71 patients with DCM were screened for <it>MYBPC3 </it>mutations by denaturing gradient gel electrophoresis and sequencing. Close relatives of mutation carriers were genotyped for the respective mutation. Relatives with mutation were then evaluated by echocardiography and magnetic resonance imaging. A detailed family history regarding adverse clinical events was recorded.</p> <p>Results</p> <p>In 16 HCM (18.4%) and two DCM (2.8%) index patients a mutation was detected. Seven mutations were novel. Mutation carriers exhibited no additional mutations in genes <it>MYH7</it>, <it>TNNT2</it>, <it>TNNI3</it>, <it>ACTC </it>and <it>TPM1</it>. Including relatives of twelve families, a total number of 42 mutation carriers was identified of which eleven (26.2%) had at least one adverse event. Considering the twelve families and six single patients with mutations, 45 individuals with cardiomyopathy and nine with borderline phenotype were identified. Among the 45 patients, 23 (51.1%) suffered from an adverse event. In eleven patients of seven families an unexplained sudden death was reported at the age between 13 and 67 years. Stroke or a transient ischemic attack occurred in six patients of five families. At least one adverse event occurred in eleven of twelve families.</p> <p>Conclusion</p> <p><it>MYBPC3 </it>mutations can be associated with cardiac events such as progressive heart failure, stroke and sudden death even at younger age. Therefore, patients with <it>MYBPC3 </it>mutations require thorough clinical risk assessment.</p

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets

    Get PDF
    The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal of Astrobiology (2019

    Carbonic anhydrase activation is associated with worsened pathological remodeling in human ischemic diabetic cardiomyopathy.

    Get PDF
    BACKGROUND: Diabetes mellitus (DM) has multifactorial detrimental effects on myocardial tissue. Recently, carbonic anhydrases (CAs) have been shown to play a major role in diabetic microangiopathy but their role in the diabetic cardiomyopathy is still unknown. METHODS AND RESULTS: We obtained left ventricular samples from patients with DM type 2 (DM-T2) and nondiabetic (NDM) patients with postinfarct heart failure who were undergoing surgical coronary revascularization. Myocardial levels of CA-I and CA-II were 6- and 11-fold higher, respectively, in DM-T2 versus NDM patients. Elevated CA-I expression was mainly localized in the cardiac interstitium and endothelial cells. CA-I induced by high glucose levels hampers endothelial cell permeability and determines endothelial cell apoptosis in vitro. Accordingly, capillary density was significantly lower in the DM-T2 myocardial samples (mean±SE=2152±146 versus 4545±211/mm(2)). On the other hand, CA-II was mainly upregulated in cardiomyocytes. The latter was associated with sodium-hydrogen exchanger-1 hyperphosphorylation, exaggerated myocyte hypertrophy (cross-sectional area 565±34 versus 412±27 μm(2)), and apoptotic death (830±54 versus 470±34 per 10(6) myocytes) in DM-T2 versus NDM patients. CA-II is activated by high glucose levels and directly induces cardiomyocyte hypertrophy and death in vitro, which are prevented by sodium-hydrogen exchanger-1 inhibition. CA-II was shown to be a direct target for repression by microRNA-23b, which was downregulated in myocardial samples from DM-T2 patients. MicroRNA-23b is regulated by p38 mitogen-activated protein kinase, and it modulates high-glucose CA-II-dependent effects on cardiomyocyte survival in vitro. CONCLUSIONS: Myocardial CA activation is significantly elevated in human diabetic ischemic cardiomyopathy. These data may open new avenues for targeted treatment of diabetic heart failure

    Gastrointestinal stromal tumour and hypoglycemia in a Fjord pony: Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neoplasia may cause hypoglycemia in different species including the horse, but hypoglycemia has not previously been reported in the horse associated with gastrointestinal stromal tumours.</p> <p>Case presentation</p> <p>A case of a gastrointestinal stromal tumour in a Fjord pony with severe recurrent hypoglycemia is presented. The mechanism causing the hypoglycemia was not established.</p> <p>Conclusion</p> <p>This case indicates that a gastrointestinal stromal tumour may cause hypoglycemia also in the horse.</p

    Biosignals reflect pair-dynamics in collaborative work : EDA and ECG study of pair-programming in a classroom environment

    Get PDF
    Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.Peer reviewe
    corecore