506 research outputs found

    Predicting the impacts of climate change on a globally distributed species: the case of the loggerhead turtle

    Get PDF
    © Company of Biologists. Post print version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at: http://jeb.biologists.org/content/213/6/901.shortMarine turtles utilise terrestrial and marine habitats and several aspects of their life history are tied to environmental features that are altering due to rapid climate change. We overview the likely impacts of climate change on the biology of these species, which are likely centred upon the thermal ecology of this taxonomic group. Then, focusing in detail on three decades of research on the loggerhead turtle (Caretta caretta L.), we describe how much progress has been made to date and how future experimental and ecological focus should be directed. Key questions include: what are the current hatchling sex ratios from which to measure future climate-induced changes? What are wild adult sex ratios and how many males are necessary to maintain a fertile and productive population? How will climate change affect turtles in terms of their distribution

    Identification of a novel type of spacer element required for imprinting in fission yeast

    Get PDF
    Asymmetrical segregation of differentiated sister chromatids is thought to be important for cellular differentiation in higher eukaryotes. Similarly, in fission yeast, cellular differentiation involves the asymmetrical segregation of a chromosomal imprint. This imprint has been shown to consist of two ribonucleotides that are incorporated into the DNA during laggingstrand synthesis in response to a replication pause, but the underlying mechanism remains unknown. Here we present key novel discoveries important for unravelling this process. Our data show that cis-acting sequences within the mat1 cassette mediate pausing of replication forks at the proximity of the imprinting site, and the results suggest that this pause dictates specific priming at the position of imprinting in a sequence-independent manner. Also, we identify a novel type of cis-acting spacer region important for the imprinting process that affects where subsequent primers are put down after the replication fork is released from the pause. Thus, our data suggest that the imprint is formed by ligation of a not-fullyprocessed Okazaki fragment to the subsequent fragment. The presented work addresses how differentiated sister chromatids are established during DNA replication through the involvement of replication barriers

    Improved eradication of Clostridium difficile spores from toilets of hospitalized patients using an accelerated hydrogen peroxide as the cleaning agent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>C. difficle </it>spores in the environment of patients with <it>C. difficile </it>associated disease (CDAD) are difficult to eliminate. Bleach (5000 ppm) has been advocated as an effective disinfectant for the environmental surfaces of patients with CDAD. Few alternatives to bleach for non-outbreak conditions have been evaluated in controlled healthcare studies.</p> <p>Methods</p> <p>This study was a prospective clinical comparison during non-outbreak conditions of the efficacy of an accelerated hydrogen peroxide cleaner (0.5% AHP) to the currently used stabilized hydrogen peroxide cleaner (0.05% SHP at manufacturer recommended use-dilution) with respect to spore removal from toilets in a tertiary care facility. The toilets used by patients who had diarrhea with and without <it>C. difficile </it>associated disease (CDAD) were cultured for <it>C. difficile </it>and were monitored using an ultraviolet mark (UVM) to assess cleaning compliance on a daily basis 5 days per week. A total of 243 patients and 714 samples were analysed. The culture results were included in the analysis only if the UVM audit from the same day confirmed that the toilet had been cleaned.</p> <p>Results</p> <p>Our data demonstrated that the efficacy of spore killing is formulation specific and cannot be generalized. The Oxivir<sub>TB</sub><sup>® </sup>AHP formulation resulted in statistically significantly (p = 0.0023) lower levels of toxigenic <it>C. difficile </it>spores in toilets of patients with CDAD compared to the SHP formulation that was routinely being used (28% vs 45% culture positive). The background level of toxigenic <it>C. difficile </it>spores was 10% in toilets of patients with diarrhea not due to CDAD. The UVM audit indicated that despite the enhanced twice-daily cleaning protocol for CDAD patients cleaning was not achieved on approximately 30 - 40% of the days tested.</p> <p>Conclusion</p> <p>Our data indicate that the AHP formulation evaluated that has some sporicidal activity was significantly better than the currently used SHP formulation. This AHP formulation provides a one-step process that significantly lowers the <it>C. difficile </it>spore level in toilets during non-outbreak conditions without the workplace safety concerns associated with 5000 ppm bleach.</p

    Informing research priorities for immature sea turtles through expert elicitation

    Get PDF
    This is the final version. Available from Inter Research via the DOI in this record. Although sea turtles have received substantial focus worldwide, research on the immature life stages is still relatively limited. The latter is of particular importance, given that a large proportion of sea turtle populations comprises immature individuals. We set out to identify knowledge gaps and identify the main barriers hindering research in this field. We analyzed the perceptions of sea turtle experts through an online survey which gathered their opinions on the current state of affairs on immature sea turtle research, including species and regions in need of further study, priority research questions, and barriers that have interfered with the advancement of research. Our gap analysis indicates that studies on immature leatherback Dermochelys coriacea and hawksbill Eretmochelys imbricata turtles are lacking, as are studies on all species based in the Indian, South Pacific, and South Atlantic Oceans. Experts also perceived that studies in population ecology, namely on survivorship and demography, and habitat use/behavior, are needed to advance the state of knowledge on immature sea turtles. Our survey findings indicate the need for more interdisciplinary research, collaborative efforts (e.g. data-sharing, joint field activities), and improved communication among researchers, funding bodies, stakeholders, and decision-makers

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
    corecore