Asymmetrical segregation of differentiated sister chromatids is thought to be important for cellular differentiation in higher
eukaryotes. Similarly, in fission yeast, cellular differentiation involves the asymmetrical segregation of a chromosomal
imprint. This imprint has been shown to consist of two ribonucleotides that are incorporated into the DNA during laggingstrand
synthesis in response to a replication pause, but the underlying mechanism remains unknown. Here we present key
novel discoveries important for unravelling this process. Our data show that cis-acting sequences within the mat1 cassette
mediate pausing of replication forks at the proximity of the imprinting site, and the results suggest that this pause dictates
specific priming at the position of imprinting in a sequence-independent manner. Also, we identify a novel type of cis-acting
spacer region important for the imprinting process that affects where subsequent primers are put down after the
replication fork is released from the pause. Thus, our data suggest that the imprint is formed by ligation of a not-fullyprocessed
Okazaki fragment to the subsequent fragment. The presented work addresses how differentiated sister
chromatids are established during DNA replication through the involvement of replication barriers