93 research outputs found

    Annotation extensions

    Get PDF
    The specificity of knowledge that Gene Ontology (GO) annotations currently can represent is still restricted by the legacy format of the GO annotation file, a format intentionally designed for simplicity to keep the barriers to entry low and thus encourage initial adoption. Historically, the information that could be captured in a GO annotation was simply the role or location of a gene product, although genetically interacting or binding partners could be specified. While there was no mechanism within the original GO annotation format for capturing additional information about the context of a GO term, such as the target gene of an activity or the location of a molecular function, the long-term vision for the GO Consortium was to provide greater expressivity in its annotations to capture physiologically relevant information. Thus, as a step forwards, the GO Consortium has introduced a new field into the annotation format, annotation extensions, which can be used to capture valuable contextual detail. This provides experimentally verified links between gene products and other physiological information that is crucial for accurate analysis of pathway and network data. This chapter will provide a simple overview of annotation extensions, illustrated with examples of their usage, and explain why they are useful for scientists and bioinformaticians alike

    The provision of NHS health checks in a community setting: an ethnographic account

    Get PDF
    Background: The UK National Health Service Health Checks programme aims to reduce avoidable cardiovascular deaths, disability and health inequalities in England. However, due to the reported lower uptake of screening in specific black and minority ethnic communities who are recognised as being more at risk of cardiovascular disease, there are concerns that NHS Health Checks may increase inequalities in health. This study aimed to examine the feasibility and acceptability of community outreach NHS Health Checks targeted at the Afro-Caribbean community. Methods: This paper reports findings from an ethnographic study including direct observation of four outreach events in four different community venues in inner-city Bristol, England and follow up semi-structured interviews with attendees (n = 16) and staff (n = 4). Interviews and field notes were transcribed, anonymized and analysed thematically using a process of constant comparison. Results: Analysis revealed the value of community assets (community engagement workers, churches, and community centres) to publicise the event and engage community members. People were motivated to attend for preventative reasons, often prompted by familial experience of cardiovascular disease. Attendees valued outreach NHS Health Checks, reinforcing or prompting some to make healthy lifestyle changes. The NHS Health Check provided an opportunity for attendees to raise other health concerns with health staff and to discuss their test results with peers. For some participants, the communication of test results, risk and lifestyle information was confusing and unwelcome. The findings additionally highlight the need to ensure community venues are fit for purpose in terms of assuring confidentiality. Conclusions: Outreach events provide evidence of how local health partnerships (family practice staff and health trainers) and community assets, including informal networks, can enhance the delivery of outreach NHS Health Checks and in promoting the health of targeted communities. To deliver NHS Health Checks effectively, the location and timing of events needs to be carefully considered and staff need to be provided with the appropriate training to ensure patients are supported and enabled to make lifestyle changes

    Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many critical maturational processes take place in the human brain during postnatal development. In particular, the prefrontal cortex does not reach maturation until late adolescence and this stage is associated with substantial white matter volume increases. Patients with schizophrenia and other major psychiatric disorders tend to first present with overt symptoms during late adolescence/early adulthood and it has been proposed that this developmental stage represents a "window of vulnerability".</p> <p>Methods</p> <p>In this study we used whole genome microarrays to measure gene expression in post mortem prefrontal cortex tissue from human individuals ranging in age from 0 to 49 years. To identify genes specifically altered in the late adolescent period, we applied a template matching procedure. Genes were identified which showed a significant correlation to a template showing a peak of expression between ages 15 and 25.</p> <p>Results</p> <p>Approximately 2000 genes displayed an expression pattern that was significantly correlated (positively or negatively) with the template. In the majority of cases, these genes in fact reached a plateau during adolescence with only subtle changes thereafter. These include a number of genes previously associated with schizophrenia including the susceptibility gene neuregulin 1 (NRG1). Functional profiling revealed peak expression in late adolescence for genes associated with energy metabolism and protein and lipid synthesis, together with decreases for genes involved in glutamate and neuropeptide signalling and neuronal development/plasticity. Strikingly, eight myelin-related genes previously found decreased in schizophrenia brain tissue showed a peak in their expression levels in late adolescence, while the single myelin gene reported increased in patients with schizophrenia was decreased in late adolescence.</p> <p>Conclusion</p> <p>The observed changes imply that molecular mechanisms critical for adolescent brain development are disturbed in schizophrenia patients.</p

    Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation

    Get PDF
    Within interior North America, erratic weather patterns and heterogeneous wetland complexes cause wide spatio-temporal variation in the resources available to migrating shorebirds. Identifying the pattern-generating components of landscape-level resources and the scales at which shorebirds respond to these patterns will better facilitate conservation efforts for these species. We constructed descriptive models that identified weather variables associated with creating the spatio-temporal patterns of shorebird habitat in ten landscapes in north-central Oklahoma. We developed a metric capable of measuring the dynamic composition and configuration of shorebird habitat in the region and used field data to empirically estimate the spatial scale at which shorebirds respond to the amount and configuration of habitat. Precipitation, temperature, solar radiation and wind speed best explained the incidence of wetland habitat, but relationships varied among wetland types. Shorebird occurrence patterns were best explained by habitat density estimates at a 1.5 km scale. This model correctly classified 86 % of shorebird observations. At this scale, when habitat density was low, shorebirds occurred in 5 % of surveyed habitat patches but occurrence reached 60 % when habitat density was high. Our results suggest scale dependence in the habitat-use patterns of migratory shorebirds. We discuss potential implications of our results and how integrating this information into conservation efforts may improve conservation strategies and management practices

    Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait.</p> <p>Results</p> <p>We analyzed 179 co-isogenic single <it>P[GT1]-</it>element insertion lines of <it>Drosophila melanogaster </it>to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes <it>Merlin </it>and <it>Karl </it>showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic <it>P</it>-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes.</p> <p>Conclusion</p> <p>We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in <it>Drosophila</it>. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait.</p

    Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species.</p> <p>Results</p> <p>We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (<it>MLH1</it>, <it>PMS2</it>, <it>EPHB4 </it>) and could confirm more than 73% of them based on evidence in the literature.</p> <p>Conclusions</p> <p>The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.</p

    Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors

    Get PDF
    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes
    corecore