2,242 research outputs found

    Atom--Molecule Coherence in a Bose-Einstein Condensate

    Full text link
    Coherent coupling between atoms and molecules in a Bose-Einstein condensate (BEC) has been observed. Oscillations between atomic and molecular states were excited by sudden changes in the magnetic field near a Feshbach resonance and persisted for many periods of the oscillation. The oscillation frequency was measured over a large range of magnetic fields and is in excellent quantitative agreement with the energy difference between the colliding atom threshold energy and the energy of the bound molecular state. This agreement indicates that we have created a quantum superposition of atoms and diatomic molecules, which are chemically different species.Comment: 7 pages, 6 figure

    Subaortic and mid-ventricular obstructive hypertrophic cardiomyopathy with an apical Aneurysm: a case report

    Get PDF
    BACKGROUND: Most patients with hypertrophic cardiomyopathy (HCM) have asymmetric septal hypertrophy and among them, 25% present dynamic subaortic obstruction. Apical HCM is unusual and mid-ventricular HCM is the most infrequent presentation, but both variants may be associated to an apical aneurysm. An even more rare presentation is the coexistece mid-ventricular and apical HCM. This case is a combination of obstructive HCM with mid-ventricular HCM and an apical aneurysm, which to date, has not been reported in the literature. CASE PRESENTATION: The patient is a 49 year-old lady who presents a combination of septal asymmetric hypertrophic cardiomyopathy (HCM) and midventricular HCM, a subaortic gradient of 65 mm Hg and a midventricular gradient of 20 mm Hg, plus an apical aneurysm. Her clinical presentation was an acute myocardial infarction in June 2005. One month after hospital discharge, the electrocardiogram (ECG) showed a right bundle branch block (RBBB) with no Q waves or ST segment elevation. Coronary angiography revealed normal coronary arteries, left ventricular hypertrophy and an apical aneurysm. CONCLUSION: This case is a rare example of an asymptomatic patient with subaortic and mid-ventricular hypertrophic cardiomyopathy, who presents a myocardial infarction and normal coronary arteries, and during the course of her disease develops an apical aneurysm

    Formalization of gene regulation knowledge using ontologies and gene ontology causal activity models

    Get PDF
    Gene regulation computational research requires handling and integrating large amounts of heterogeneous data. The Gene Ontology has demonstrated that ontologies play a fundamental role in biological data interoperability and integration. Ontologies help to express data and knowledge in a machine processable way, which enables complex querying and advanced exploitation of distributed data. Contributing to improve data interoperability in gene regulation is a major objective of the GREEKC Consortium, which aims to develop a standardized gene regulation knowledge commons. GREEKC proposes the use of ontologies and semantic tools for developing interoperable gene regulation knowledge models, which should support data annotation. In this work, we study how such knowledge models can be generated from cartoons of gene regulation scenarios. The proposed method consists of generating descriptions in natural language of the cartoons; extracting the entities from the texts; finding those entities in existing ontologies to reuse as much content as possible, especially from well known and maintained ontologies such as the Gene Ontology, the Sequence Ontology, the Relations Ontology and ChEBI; and implementation of the knowledge models. The models have been implemented using Protégé, a general ontology editor, and Noctua, the tool developed by the Gene Ontology Consortium for the development of causal activity models to capture more comprehensive annotations of genes and link their activities in a causal framework for Gene Ontology Annotations. We applied the method to two gene regulation scenarios and illustrate how to apply the models generated to support the annotation of data from research articles

    Genetics of CM-proteins (A-hordeins) in barley

    Full text link
    The CM-proteins, which are the main components of the A-hordeins, include four previously described proteins (CMa-1, CMb-1, CMc-1, CMd-1), plus a new one, CMe-1, which has been tentatively included in this group on the basis of its solubility properties and electrophoretic mobility. The variability of the five proteins has been investigated among 38 Hordeum vulgare cultivars and 17 H. spontaneum accessions. Proteins CMa-1, CMc-1 and CMd-1 were invariant within the cultivated species; CMd was also invariant in the wild one. The inheritance of variants CMb-1/CMb-2 and CMe-1/CMe-2,2 was studied in a cross H. spontaneum x H. vulgare. The first two proteins were inherited as codominantly expressed allelic variations of a single mendelian gene. Components CMe-2,2 were jointly inherited and codominantly expressed with respect to CMe-1. Gene CMb and gene(s) CMe were found to be unlinked. The chromosomal locations of genes encoding CM-proteins were investigated using wheat-barley addition lines. Genes CMa and CMc were associated with chromosome 1, and genes CMb and CMd with chromosome 4. These gene locations further support the proposed homoeology of chromosomes 1 and 4 of barley with chromosomes groups 7 and 4 of wheat, respectively. Gene(s) CMe has been assigned to chromosome 3 of barley. The accumulation of protein CMe-1 is totally blocked in the high lysine mutant Riso 1508 and partially so in the high lysine barley Hiproly

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    INT reduction is a valid proxy for eukaryotic plankton respiration despite the inherent toxicity of INT and differences in cell wall structure

    Get PDF
    The reduction of 2-para (iodophenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) is increasingly being used as an indirect method to measure plankton respiration. Its greater sensitivity and shorter incubation time compared to the standard method of measuring the decrease in dissolved oxygen concentration, allows the determination of total and size-fractionated plankton respiration with higher precision and temporal resolution. However, there are still concerns as to the method’s applicability due to the toxicity of INT and the potential differential effect of plankton cell wall composition on the diffusion of INT into the cell, and therefore on the rate of INT reduction. Working with cultures of 5 marine plankton (Thalassiosira pseudonana CCMP1080/5, Emiliania huxleyi RCC1217, Pleurochrysis carterae PLY-406, Scrippsiella sp. RCC1720 and Oxyrrhis marina CCMP1133/5) which have different cell wall compositions (silica frustule, presence/absence of calcite and cellulose plates), we demonstrate that INT does not have a toxic effect on oxygen consumption at short incubation times. There was no difference in the oxygen consumption of a culture to which INT had been added and that of a replicate culture without INT, for periods of time ranging from 1 to 7 hours. For four of the cultures (T. pseudonana CCMP1080/5, P. carterae PLY-406, E. huxleyi RCC1217, and O. marina CCMP1133/5) the log of the rates of dissolved oxygen consumption were linearly related to the log of the rates of INT reduction, and there was no significant difference between the regression lines for each culture (ANCOVA test, F = 1.696, df = 3, p = 0.18). Thus, INT reduction is not affected by the structure of the plankton cell wall and a single INT reduction to oxygen consumption conversion equation is appropriate for this range of eukaryotic plankton. These results further support the use of the INT technique as a valid proxy for marine plankton respiration

    The Effect of Feedback on Resistance Training Performance and Adaptations: A Systematic Review and Meta-analysis

    Get PDF
    Background Augmented feedback is often used during resistance training to enhance acute physical performance and has shown promise as a method of improving chronic physical adaptation. However, there are inconsistencies in the scientific literature regarding the magnitude of the acute and chronic responses to feedback and the optimal method with which it is provided. Objective This systematic review and meta-analysis aimed to (1) establish the evidence for the effects of feedback on acute resistance training performance and chronic training adaptations; (2) quantify the effects of feedback on acute kinematic outcomes and changes in physical adaptations; and (3) assess the effects of moderating factors on the influence of feedback during resistance training. Methods Twenty studies were included in this systematic review and meta-analysis. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched, and studies were included if they were peer-reviewed investigations, written in English, and involved the provision of feedback during or following dynamic resistance exercise. Furthermore, studies must have evaluated either acute training performance or chronic physical adaptations. Risk of bias was assessed using a modified Downs and Black assessment tool. Multilevel meta-analyses were performed to quantify the effects of feedback on acute and chronic training outcomes. Results Feedback enhanced acute kinetic and kinematic outputs, muscular endurance, motivation, competitiveness, and perceived effort, while greater improvements in speed, strength, jump performance, and technical competency were reported when feedback was provided chronically. Furthermore, greater frequencies of feedback (e.g., following every repetition) were found to be most beneficial for enhancing acute performance. Results demonstrated that feedback improves acute barbell velocities by approximately 8.4% (g = 0.63, 95% confidence interval [CI] 0.36–0.90). Moderator analysis revealed that both verbal (g = 0.47, 95% CI 0.22–0.71) and visual feedback (g = 1.11, 95% CI 0.61–1.61) were superior to no feedback, but visual feedback was superior to verbal feedback. For chronic outcomes, jump performance might have been positively influenced (g = 0.39, 95% CI − 0.20 to 0.99) and short sprint performance was likely enhanced (g = 0.47, 95% CI 0.10–0.84) to a greater extent when feedback is provided throughout a training cycle. Conclusions Feedback during resistance training can lead to enhanced acute performance within a training session and greater chronic adaptations. Studies included in our analysis demonstrated a positive influence of feedback, with all outcomes showing superior results than when no feedback is provided. For practitioners, it is recommended that high-frequency, visual feedback is consistently provided to individuals when they complete resistance training, and this may be particularly useful during periods of low motivation or when greater competitiveness is beneficial. Alternatively, researchers must be aware of the ergogenic effects of feedback on acute and chronic responses and ensure that feedback is standardised when investigating resistance training
    • 

    corecore