609 research outputs found
The potential of novel gene editing-based approaches in forages and rumen Archaea for reducing livestock methane emissions.
Rising emissions of anthropogenic greenhouse gases such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are a key driver of climate change, which is predicted to have myriad detrimental consequences in coming years if not kept in check. Given the potency of CH4 in terms of trapping heat in the atmosphere in the short term, as well as the fact that ruminant production currently contributes approximately 30% of anthropogenic emissions, there is an impetus to substantially decrease the generation of ruminant-derived CH4. While various strategies are being assessed in this context, a multi-faceted approach is likely required to achieve significant reductions. Feed supplementation is one strategy that has shown promise in this field by attenuating methanogenesis in rumen archaea; however, this can be costly and sometimes impractical. In this review, we examine and discuss the prospect of directly modulating forages and/or rumen archaea themselves in a manner that would reduce methanogenesis using CRISPR/Cas-mediated gene editing platforms. Such an approach could provide a valuable alternative to supplementation and has the potential to contribute to the sustainability of agriculture, as well as the mitigation of climate change, in the future
Protocol for the establishment of a serine integrase-based platform for functional validation of genetic switch controllers in eukaryotic cells.
Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms. To help expand the number of Ints available for the assembly of more complex multifunctional circuits in eukaryotic cells, this protocol describes a platform for the assembly and functional screening of serine-integrase-based genetic switches designed to control gene expression by directional inversions of DNA sequence orientation. The system consists of two sets of plasmids, an effector module and a reporter module, both sets assembled with regulatory components (as promoter and terminator regions) appropriate for expression in mammals, including humans, and plants. The complete method involves plasmid design, DNA delivery, testing and both molecular and phenotypical assessment of results. This platform presents a suitable workflow for the identification and functional validation of new tools for the genetic regulation and reprogramming of organisms with importance in different fields, from medical applications to crop enhancement, as shown by the initial results obtained. This protocol can be completed in 4 weeks for mammalian cells or up to 8 weeks for plant cells, considering cell culture or plant growth time.Na publicação: Eduardo O. Melo; Daniela M. Bittencourt; Elibio Rech
New Constraints from High Redshift Supernovae and Lensing Statistics upon Scalar Field Cosmologies
We explore the implications of gravitationally lensed QSOs and high-redshift
SNe Ia observations for spatially flat cosmological models in which a
classically evolving scalar field currently dominates the energy density of the
Universe. We consider two representative scalar field potentials that give rise
to effective decaying (``quintessence'') models:
pseudo-Nambu-Goldstone bosons () and an inverse
power-law potential (). We show that a
large region of parameter space is consistent with current data if . On the other hand, a higher lower bound for the matter density
parameter suggested by large-scale galaxy flows, ,
considerably reduces the allowed parameter space, forcing the scalar field
behavior to approach that of a cosmological constant.Comment: 6 pages, 2 figures, submitted to PR
Association of coronary calcification with prognosis of Covid-19 patients without known heart disease
Risk factors that determine the severity of Covid-19 have not been fully elucidated. The aim of this study was to evaluate the role of coronary artery calcification (CAC) as a risk factor for death or mechanical ventilation (MV) of patients without known heart disease infected with Covid-19. We analyzed 283 consecutive in-patients with acute respiratory symptoms with chest computed tomography (chest-CT), without previous heart disease, and criteria for Covid-19 (RT-PCR positive and/or typical clinical and chest-CT findings). CAC was classified by the number of coronary segments affected as absent (0), mild (1-3), and severe calcification (more than 3). The association between CAC, CAC severity, and death or MV due to severe respiratory failure was assessed by logistic regression. The mean age was 58.7 +/- 15.7 years and 54.1% were men. Patients with CAC were older, more likely to have hypertension, and less likely to be obese. CAC was present in 75 patients (26.5%), of which 42 had a mild calcification and 33 had severe calcification, and was associated with death (OR=2.35, 95%CI: 1.01-5.48) or MV (OR=2.72, 95%CI: 1.20-6.20) adjusted for multiple confounders, with significant and increased odds ratio for the severe form of CAC (death: OR=3.70, 95%CI: 1.20-11.42; MV: OR=3.30, 95%CI: 1.09-9.95). We concluded that CAC was an independent risk factor for death or MV in Covid-19 patients without previous heart disease, particularly for those with severe calcification. CAC can be easily visualized on common chest-CT, widely used in evaluation of moderate to severe Covid-19
Redes neurais artificiais aplicadas na previsão do VTEC no Brasil
Uma forma de se prever o conteúdo total de elétrons na direção vertical (VTEC - Vertical Total Electron Content) usando a arquitetura de redes neurais artificiais (RNA) denominada de perceptrons de múltiplas camadas (MLP - MultipLayer Percetrons) é apresentada e avaliada nesta pesquisa. As entradas do modelo foram definidas como sendo a posição dos pontos ionosféricos (IPP - Ionospheric Pierce Point) e o tempo universal (TU), enquanto que a saída é o VTEC. As variações sazonais e de períodos mais longos são levadas em conta através da atualização do treinamento diariamente. Testes foram conduzidos sobre uma área que abrange o Brasil e sua vizinhança considerando períodos de alta e baixa atividade solar. As RNA foram treinadas utilizando informações dos mapas globais da ionosfera (GIM - Global Ionospheric Maps) produzidos pelo serviço internacional do GNSS (IGS - International GNSS Service) das 72 horas anteriores à época de início da previsão. As RNA treinadas foram utilizadas para prever o VTEC por 72 horas (VTEC RNA). Os VTEC RNA foram comparados com os VTEC contidos nos GIM (VTEC GIM). A raiz do erro médio quadrático (RMS) da diferença entre o VTEC GIM e o VTEC RNA variou de 1,4 a 10,7 unidades de TEC (TECU). O erro relativo mostra que a RNA proposta foi capaz de prever o VTEC com 70 a 85% de acerto
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome ( approximately 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods
Predictors of 1-year compliance with adaptive servoventilation in patients with heart failure and sleep disordered breathing: preliminary data from the ADVENT-HF trial
Despite its effectiveness in suppressing sleep disordered breathing (SDB), positive airway pressure therapy (PAP) is not always well tolerated by patients and long-term adherence can be problematic. Recently, two multicentre, randomised clinical trials (RCTs) tested the effects of PAP for patients with cardiovascular disease and co-existing SDB on morbidity and mortality with negative outcomes [1, 2]. Relatively poor adherence to PAP therapy (mean 3.7 and 3.3 h·day-1, respectively) in these two trials might have contributed to their poor results. Indeed, higher PAP use per day is associated with better clinical outcomes than lower use [3]
Median raphe region stimulation alone generates remote, but not recent fear memory traces
The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex
Blood flow changes using a 3D xenogeneic collagen matrix or a subepithelial connective tissue graft for root coverage procedures: a pilot study.
BACKGROUND: The study investigated the early healing process following the treatment of single Miller class I and II recessions with a 3D xenogeneic collagen matrix (CMX) or connective tissue graft (CTG). METHODS: This pilot investigation was designed as a single-center randomized controlled parallel trial. A total of eight subjects (four per group) were treated with either CMX or CTG in the anterior maxilla. Vascular flow changes were assessed by laser Doppler flowmetry (LDF) before and after surgery and at days 1, 2, 3, 7, 14, and 30 while clinical evaluations took place at baseline and at days 60 and 180. Pain intensity perception was evaluated by the short-form McGill pain questionnaire (SF-MPQ), at days 1 and 14. RESULTS: The vascular flow fluctuated similarly in both groups pre- and post-operatively, but the CTG exhibited a more homogeneous pattern as opposed to CMX that showed a second phase of increased blood flow at 14 days. Clinically, the CTG led to greater change in mean root coverage and keratinized tissue gain but CMX was associated with lower early pain intensity scores. CONCLUSIONS: Within the limits of the study, the vascular flow alterations during the early healing of both graft types followed a similar pattern. The CMX was associated with a second peak of increased blood flow. CLINICAL RELEVANCE: The vascular flow changes after the application of CMX for single tooth recession root coverage did not show major differences from those observed after the use of a CTG. A trend for better clinical performance in terms of root coverage and keratinized tissue gain was noted for the CTG, but the initial patient morbidity was less for CMX
The medicine selection process in four large university hospitals in Brazil: Does the DTC have a role?
Knowledge about evidence-based medicine selection and the role of the Drug and Therapeutics Committee (DTC) is an important topic in the literature but is scarcely discussed in Brazil. Our objective, using a qualitative design, was to analyze the medicine selection process performed in four large university hospitals in the state of Rio de Janeiro. Information was collected from documents, interviews with key informants and direct observations. Two dimensions were analyzed: the structural and organizational aspects of the selection process and the criteria and methods used in medicine selection. The findings showed that the DTC was active in two hospitals. The structure for decision-making was weak. DTC members had little experience in evidence-based selection, and their everyday functions did not influence their participation in DTC activities. The methods used to evaluate evidence were inadequate. The uncritical adoption of new medicines in these complex hospital facilities may be hampering pharmaceutical services, with consequences for the entire health system. Although the qualitative approach considerably limits the extent to which the results can be extrapolated, we believe that our findings may be relevant to other university hospitals in the country
- …