300 research outputs found
Understanding Uncertainties in Thermographic Imaging
7 p.The present article proposes a workflow based on free/open-source software solutions for the acquisition of competences in engineering courses related to the use of thermographic images. The approach is aimed to three-dimensional visualization techniques over thermographic images to improve the comprehension and interpretation of the different error sources that affects the measurements, and therefore the conclusions and analysis derived from them. The present work is framed inside the virtual laboratories discipline, as the new learning material can be employed for the acquisition of competences and skills. Additionally, it can be used for the evaluation of competences in asynchronous and e-learning programs. The learning materials could be easily deployed in a learning management system, allowing the students to work with the models by means of open-source solutions easily, both in asynchronous and face-to-face courses. Consequently, the present approach will improve the application of professional techniques, so the future professionals will reach the working market better prepared.S
An inter-laboratory comparison of low-level measurements in ground-level aerosol monitoring
Quantum Metrology Triangle Experiments: A Status Review
Quantum Metrology Triangle experiments combine three quantum electrical
effects (the Josephson effect, the quantum Hall effect and the single-electron
transport effect) used in metrology. These experiments allow important
fundamental consistency tests on the validity of commonly assumed relations
between fundamental constants of nature and the quantum electrical effects.
This paper reviews the history, results and the present status and perspectives
of Quantum Metrology Triangle experiments. It also reflects on the possible
implications of results for the knowledge on fundamental constants and the
quantum electrical effects.Comment: 36 pages, 8 figure
Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method
Varying constants, Gravitation and Cosmology
Fundamental constants are a cornerstone of our physical laws. Any constant
varying in space and/or time would reflect the existence of an almost massless
field that couples to matter. This will induce a violation of the universality
of free fall. It is thus of utmost importance for our understanding of gravity
and of the domain of validity of general relativity to test for their
constancy. We thus detail the relations between the constants, the tests of the
local position invariance and of the universality of free fall. We then review
the main experimental and observational constraints that have been obtained
from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites
dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic
microwave background and big bang nucleosynthesis. At each step we describe the
basics of each system, its dependence with respect to the constants, the known
systematic effects and the most recent constraints that have been obtained. We
then describe the main theoretical frameworks in which the low-energy constants
may actually be varying and we focus on the unification mechanisms and the
relations between the variation of different constants. To finish, we discuss
the more speculative possibility of understanding their numerical values and
the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit
Evaluation of a High Throughput Starch Analysis Optimised for Wood
Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes
Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations
- …
