38 research outputs found

    HiSpOD: probe design for functional DNA microarrays.

    Get PDF
    International audienceMOTIVATION: The use of DNA microarrays allows the monitoring of the extreme microbial diversity encountered in complex samples like environmental ones as well as that of their functional capacities. However, no probe design software currently available is adapted to easily design efficient and explorative probes for functional gene arrays. RESULTS: We present a new efficient functional microarray probe design algorithm called HiSpOD (High Specific Oligo Design). This uses individual nucleic sequences or consensus sequences produced by multiple alignments to design highly specific probes. Indeed, to bypass crucial problem of cross-hybridizations, probe specificity is assessed by similarity search against a large formatted database dedicated to microbial communities containing about 10 million coding sequences (CDS). For experimental validation, a microarray targeting genes encoding enzymes involved in chlorinated solvent biodegradation was built. The results obtained from a contaminated environmental sample proved the specificity and the sensitivity of probes designed with the HiSpOD program. AVAILABILITY: http://fc.isima.fr/~g2im/hispod/

    Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes.</p> <p>Results</p> <p>First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain <it>Sphingomonas paucimobilis </it>sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently.</p> <p>Conclusions</p> <p>We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to study any group of genes. The Metabolic Design software is freely available from the authors and can be downloaded and modified under general public license.</p

    Oryza Tag Line, a phenotypic mutant database for the GĂ©noplante rice insertion line library

    Get PDF
    To organize data resulting from the phenotypic characterization of a library of 30 000 T-DNA enhancer trap (ET) insertion lines of rice (Oryza sativa L cv. Nipponbare), we developed the Oryza Tag Line (OTL) database (http://urgi.versailles.inra.fr/OryzaTagLine/). OTL structure facilitates forward genetic search for specific phenotypes, putatively resulting from gene disruption, and/or for GUSA or GFP reporter gene expression patterns, reflecting ET-mediated endogenous gene detection. In the latest version, OTL gathers the detailed morpho-physiological alterations observed during field evaluation and specific screens in a first set of 13 928 lines. Detection of GUS or GFP activity in specific organ/tissues in a subset of the library is also provided. Search in OTL can be achieved through trait ontology category, organ and/or developmental stage, keywords, expression of reporter gene in specific organ/tissue as well as line identification number. OTL now contains the description of 9721 mutant phenotypic traits observed in 2636 lines and 1234 GUS or GFP expression patterns. Each insertion line is documented through a generic passport data including production records, seed stocks and FST information. 8004 and 6101 of the 13 928 lines are characterized by at least one T-DNA and one Tos17 FST, respectively that OTL links to the rice genome browser OryGenesDB

    Caractérisation des capacités métaboliques des populations microbiennes impliquées dans les processus de bioremédiation des chloroéthÚnes par des approches moléculaires haut débit (les biopuces ADN fonctionnelles)

    No full text
    Les chloroéthÚnes sont les polluants majeurs des eaux souterraines et des nappes phréatiques. De par leur toxicité et leur effet cancérigÚne, ils représentent une préoccupation majeure pour les autorités publiques et sanitaires. La restauration des sites contaminés est possible par des techniques de dépollution biologique impliquant les microorganismes (bioremédiation microbienne). Cependant, la réussite des traitements dépend à la fois des conditions physicochimiques du site pollué et des capacités de dégradation de la microflore indigÚne. Ainsi, pour optimiser les processus de décontamination, l identification et le suivi des différentes populations microbiennes sont indispensables avant et pendant le traitement. Les biopuces ADN fonctionnelles (FGA, Functional Gene Array), outils moléculaires haut débit, sont particuliÚrement bien adaptées pour des applications en bioremédiation. Leur élaboration nécessite de disposer de logiciels performants pour le design de sondes qui combinent à la fois une forte sensibilité, une trÚs bonne spécificité et un caractÚre exploratoire, ce dernier étant indispensable pour la détection des séquences connues mais surtout de celles encore jamais décrites au sein d échantillons environnementaux. Un nouveau logiciel, autorisant la sélection de sondes combinant tous ces critÚres, a été développé et nommé HiSpOD. Son utilisation pour la construction d une FGA dédiée aux voies de biodégradation des chloroéthÚnes a permis d évaluer l effet de traitements de biostimulation sur la microflore indigÚne pour plusieurs sites industriels contaminés. Les données révÚlent différentes associations entre microorganismes déhalorespirants qui sont fonction des paramÚtres environnementaux.Chlorinated solvents are among the most frequent contaminants found in groundwater and subsurface ecosystems. Because of their high toxicity and carcinogenicity, they represent a serious risk for human health and the environment. Thus, such polluted sites need a rehabilitation treatment. Among remediation solutions, microbial bioremediation represents a less invasive and expensive alternative than physico-chemical treatments. However, the process efficiency greatly depends on the environmental conditions and the microbial populations biodegradation capacities. Therefore, bioremediation treatment optimization requires the identification and monitoring of such capacities before and during the treatment. Functional Gene Arrays (FGA), by profiling environmental communities in a flexible and easy-to-use manner, are well adapted for an application in bioremediation. But, constructing efficient microarrays dedicated to microbial ecology requires a probe design step allowing the selection of highly sensitive, specific and explorative oligonucleotides. After a detailed state of the art on probe design strategies suitable for microbial ecology studies, we present new software, called HiSpOD, generating efficient explorative probes for FGA dedicated to environmental applications. Finally, this bioinformatics tool was used to construct a FGA targeting most genes involved in chloroethenes biodegradation pathways which allowed the evaluation of biostimulation treatments conducted on indigenous bacterial populations for several industrial contaminated sites.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    New insights into the microbial contribution to the chlorine cycle in aquatic ecosystems

    No full text
    Chapter 17Microorganisms hold key positions in ecosystem functioning, and thus in biogeochemical cycles. Among these cycles, some, such as chlorine (Cl), are still poorly understood. Recent works have revealed that natural chlorination and dechlorination of organic matter (OM) in most of the ecosystems were much more extensive and ubiquitous than previously suggested. Currently, there are clear evidences that natural chlorination is tightly linked to different defence mechanisms and antagonistic reactions among microorganisms. Likewise, it has been clearly demonstrated that organochlorine (Clorg) formation is also linked to OM degradation, possibly affecting carbon cycle. The chlorination rate of OM depends on several parameters including OM content and quality, microbial activity, chloride (Cl−) input and pH. Once produced, Clorg undergoes oxidative or reductive degradation in the environment depending on the surrounding physico-chemical conditions. Among all enzyme-mediated processes described, the organohalide respiration (an anaerobic bacterial respiratory process) is the only known mechanism leading to the removal of halogens from highly chlorinated compounds, transforming them into biodegradable metabolites. However, despite a significant growth in the literature since the early 1990s, the biogeochemistry of Cl in natural environment is still poorly documented. For instance, the Cl cycling in aquatic environments including Cl− and Clorg pools in sediment and water, are largely missing. The present chapter seeks to review the literature on the natural Cl cycling in environment, with a focus on a freshwater ecosystem, the Lake Pavin

    New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics

    Get PDF
    International audienceAdvances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle. We demonstrated that methane-producing communities were dominated by the genus Methanoregula while methane-consuming communities were dominated by the genus Methylobacter, thus confirming prior observations. Our work allowed the reconstruction of a draft of their core metabolic pathways. Hydrogenotrophs, the genes required for acetate activation in the methanogen genome, were also detected. Regarding methanotrophy, Methylobacter was present in the same areas as the non-methanotrophic, methylotrophic Methylotenera, which could suggest a relationship between these two groups. Furthermore, the presence of a large gene inventory for nitrogen metabolism (nitrate transport, denitrification, nitrite assimilation and nitrogen fixation, for instance) was detected in the Methylobacter genome

    Bacterial community composition of biological degreasing systems and health risk assessment for workers.

    No full text
    International audienceBiological degreasing system is a new technology based on the degradation capabilities of microorganisms to remove oil, grease, or lubricants from metal parts. No data is available about the potential biological health hazards in such system. Thus, a health risk assessment linked to the bacterial populations present in this new degreasing technology is, therefore, necessary for workers. We performed both cultural and molecular approaches in several biological degreasing systems for various industrial contexts to investigate the composition and dynamics of bacterial populations. These biological degreasing systems did not work with the original bacterial populations. Indeed, they were colonized by a defined and restricted group of bacteria. This group replaced the indigenous bacterial populations known for degrading complex substrates. Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, and Pantoea agglomerans were important members of the microflora found in most of the biological degreasing systems. These bacteria might represent a potential health hazard for workers

    Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes

    Get PDF
    International audienceDeep lakes are of specific interest in the study of archaeal assemblages as chemical stratification in the water column allows niche differentiation and distinct community structure. Active archaeal community and potential nitrifiers were investigated monthly over 1 year by pyrosequencing 16S rRNA transcripts and genes, and by quantification of archaeal amoA genes in two deep lakes. Our results showed that the active archaeal community patterns of spatial and temporal distribution were different between these lakes. The meromictic lake characterized by a stable redox gradient but variability in nutrient concentrations exhibited large temporal rearrangements of the dominant euryarchaeal phylotypes, suggesting a variety of ecological niches and dynamic archaeal communities in the hypolimnion of this lake. Conversely , Thaumarchaeota Marine Group I (MGI) largely dominated in the second lake where deeper water layers exhibited only short periods of complete anoxia and constant low ammonia concentrations. Investigations conducted on archaeal amoA transcripts abundance suggested that not all lacustrine Thaumarchaeota conduct the process of nitrification. A high number of 16S rRNA transcripts associated to crenarchaeal group C3 or the Miscellaneous Euryarchaeotic Group indicates the potential for these uncharacterized groups to contribute to nutrient cycling in lakes
    corecore