222 research outputs found
Surplus Photosynthetic Antennae Complexes Underlie Diagnostics of Iron Limitation in a Cyanobacterium
Chlorophyll fluorescence from phytoplankton provides a tool to assess iron limitation in the oceans, but the physiological mechanism underlying the fluorescence response is not understood. We examined fluorescence properties of the model cyanobacterium Synechocystis PCC6803 and a ΔisiA knock-out mutant of the same species grown under three culture conditions which simulate nutrient conditions found in the open ocean: (1) nitrate and iron replete, (2) limiting-iron and high-nitrate, representative of natural high-nitrate, low-chlorophyll regions, and (3) iron and nitrogen co-limiting. We show that low variable fluorescence, a key diagnostic of iron limitation, results from synthesis of antennae complexes far in excess of what can be accommodated by the iron-restricted pool of photosynthetic reaction centers. Under iron and nitrogen co-limiting conditions, there are no excess antennae complexes and variable fluorescence is high. These results help to explain the well-established fluorescence characteristics of phytoplankton in high-nutrient, low-chlorophyll ocean regions, while also accounting for the lack of these properties in low-iron, low-nitrogen regions. Importantly, our results complete the link between unique molecular consequences of iron stress in phytoplankton and global detection of iron stress in natural populations from space
The Effect of Sustained Compression on Oxygen Metabolic Transport in the Intervertebral Disc Decreases with Degenerative Changes
Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition
The role of zinc in the anti-tumour and anti-cachectic activity of D-myo-inositol 1,2,6-triphosphate
Background: D-myo-inositol-1,2,6-triphosphate (a-trinositol, AT) is a polyanionic molecule capable of chelating divalent metal ions with anti-tumour and anti-cachectic activity in a murine model. Methods: To investigate the role of zinc in this process, mice bearing cachexia-inducing MAC16 tumour were treated with AT, with or without concomitant administration of ZnSO4. Results: At a dose of 40mgkg-1, AT effectively attenuated both weight loss and growth of the MAC16 tumour, and both effects were attenuated by co-administration of Zn2+. The concentration of zinc in gastrocnemius muscle increased with increasing weight loss, whereas administration of AT decreased the levels of zinc in plasma, skeletal muscle and tumour, which were restored back to control values after administration of ZnSO4. Conclusion: These results suggest that zinc is important in both tumour growth and cachexia in this animal model
Translating research into practice in Leeds and Bradford (TRiPLaB): a protocol for a programme of research
Background
The National Institute for Health Research (NIHR) has funded nine Collaborations for Leadership in Applied Health Research and Care (CLAHRCs). Each CLAHRC is a partnership between higher education institutions (HEIs) and the NHS in nine UK regional health economies. The CLAHRC for Leeds, York, and Bradford comprises two 'research themes' and three 'implementation themes.' One of these implementation themes is Translating Research into Practice in Leeds and Bradford (TRiPLaB). TRiPLaB aims to develop, implement, and evaluate methods for inducing and sustaining the uptake of research knowledge into practice in order to improve the quality of health services for the people of Leeds and Bradford.
Methods
TRiPLaB is built around a three-stage, sequential, approach using separate, longitudinal case studies conducted with collaborating NHS organisations, TRiPLaB will select robust innovations to implement, conduct a theory-informed exploration of the local context using a variety of data collection and analytic methods, and synthesise the information collected to identify the key factors influencing the uptake and adoption of targeted innovations. This synthesis will inform the development of tailored, multifaceted, interventions designed to increase the translation of research findings into practice. Mixed research methods, including time series analysis, quasi-experimental comparison, and qualitative process evaluation, will be used to evaluate the impact of the implementation strategies deployed.
Conclusion
TRiPLaB is a theory-informed, systematic, mixed methods approach to developing and evaluating tailored implementation strategies aimed at increasing the translation of research-based findings into practice in one UK health economy. Through active collaboration with its local NHS, TRiPLaB aims to improve the quality of health services for the people of Leeds and Bradford and to contribute to research knowledge regarding the interaction between context and adoption behaviour in health services
Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice
Atrophy of skeletal muscle reduces both the quality and quantity of life of patients with cancer cachexia. Loss of muscle mass is thought to arise from a reduction in protein synthesis combined with an enhanced rate of protein degradation, and few treatments are available to counteract this process. Eicosapentaenoic acid (EPA) has been shown to attenuate the enhanced protein degradation, but to have no effect on protein synthesis. This study examines the effect of EPA combined with a protein and amino-acid supplementation on protein synthesis and degradation in gastrocnemius muscle of mice bearing the cachexia-inducing MAC16 tumour. Muscles from cachectic mice showed an 80% reduction in protein synthesis and about a 50-fold increase in protein degradation compared with muscles from nontumour-bearing mice of the same age and weight. Treatment with EPA (1 g kg-1) daily reduced protein degradation by 88%, but had no effect on protein synthesis. Combination of EPA with casein (5.35 g kg-1) also had no effect on protein synthesis, but when combined with the amino acids leucine, arginine and methionine there was almost a doubling of protein synthesis. The addition of carbohydrate (10.7 g kg-1) to stimulate insulin release had no additional effect. The combination involving the amino acids produced almost a doubling of the ratio of protein synthesis to protein degradation in gastrocnemius muscle over that of EPA alone. No treatment had a significant effect on tumour growth rate, but the inclusion of amino acids had a more significant effect on weight loss induced by the MAC16 tumour than that of EPA alone. The results suggest that combination therapy of cancer cachexia involving both inhibition of the enhanced protein degradation and stimulation of the reduced protein synthesis may be more effective than either treatment alone. © 2004 Cancer Research UK
From trial to population: A study of a family-based community intervention for childhood overweight implemented at scale
To assess how outcomes associated with participation in a family-based weight management intervention (MEND 7–13, Mind, Exercise, Nutrition..Do it!) for childhood overweight or obesity implemented at scale in the community vary by child, family, neighbourhood and MEND programme characteristics
Influence of O6-benzylguanine on the anti-tumour activity and normal tissue toxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea and molecular combinations of 5-fluorouracil and 2-chloroethyl-1-nitrosourea in mice
Previous studies have demonstrated that novel molecular combinations of 5-fluorouracil (5FU) and 2-chloroethyl-1-nitrosourea (CNU) have good preclinical activity and may exert less myelotoxicity than the clinically used nitrosoureas such as 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). This study examined the effect of O6-alkylguanine-DNA-alkyltransferase (ATase) depletion by the pseudosubstrate O6-benzylguanine (BG) on the anti-tumour activity and normal tissue toxicity in mice of three such molecular combinations, in comparison with BCNU. When used as single agents at their maximum tolerated dose, all three novel compounds produced a significant growth retardation of BCNU-resistant murine colon and human breast xenografts. This in vivo anti-tumour effect was potentiated by BG, but was accompanied by severe myelotoxicity as judged by spleen colony forming assays. However, while tumour resistance to BCNU was overcome using BG, this was at the expense of enhanced bone marrow, gut and liver toxicity. Therefore, although this ATase-depletion approach resulted in improved anti-tumour activity for all three 5-FU:CNU molecular combinations, the potentiated toxicities in already dose-limiting tissues indicate that these types of agents offer no therapeutic advantage over BCNU when they are used together with BG. © 1999 Cancer Research Campaig
Living on the edge: utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges
Context: In agricultural landscapes, small woodland patches can be important wildlife refuges. Their value in maintaining biodiversity may, however, be compromised by isolation, and so knowledge about the role of habitat structure is vital to understand the drivers of diversity. This study examined how avian diversity and abundance were related to habitat structure in four small woods in an agricultural landscape in eastern England. Objectives: The aims were to examine the edge effect on bird diversity and abundance, and the contributory role of vegetation structure. Specifically: what is the role of vegetation structure on edge effects, and which edge structures support the greatest bird diversity? Methods: Annual breeding bird census data for 28 species were combined with airborne lidar data in linear mixed models fitted separately at (i) the whole wood level, and (ii) for the woodland edges only. Results: Despite relatively small woodland areas (4.9–9.4 ha), bird diversity increased significantly towards the edges, being driven in part by vegetation structure. At the whole woods level, diversity was positively associated with increased vegetation above 0.5 m and especially with increasing vegetation density in the understorey layer, which was more abundant at the woodland edges. Diversity along the edges was largely driven by the density of vegetation below 4 m. Conclusions: The results demonstrate that bird diversity was maximised by a diverse vegetation structure across the wood and especially a dense understorey along the edge. These findings can assist bird conservation by guiding habitat management of remaining woodland patches
Simulated-Physiological Loading Conditions Preserve Biological and Mechanical Properties of Caprine Lumbar Intervertebral Discs in Ex Vivo Culture
Low-back pain (LBP) is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD) is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions
Effective Inhibition of Xenografts of Hepatocellular Carcinoma (HepG2) by Rapamycin and Bevacizumab in an Intrahepatic Model
10.1007/s11307-009-0213-4Molecular Imaging and Biology115334-342CPIM
- …