4,932 research outputs found

    Synthesis of compact wind profiles using evolutionary algorithms

    Get PDF
    In this paper, the authors face the problem of wind speed processing as environmental variable of a wind turbine system. Generally, the information on wind speed measurements is processed over long periods of time to be relevant with respect to the site characteristics (average and maximum speeds, statistics). Subsequent large scale profiles of wind speed lead to long processing time for simulation analysis and especially for optimization design that penalizes the search of optimal solutions. An original synthesis approach of a compact and representative wind speed profile using an Evolutionary Algorithm (EA) is proposed. This approach is compared to a purely statistical approach based on random number generators. It allows reducing the actual wind profile duration with compression ratios greater (two months of wind speed measurements are compressed in only 1 hour). Then, the synthesis approach by EA is applied to the sizing of an autonomous hybrid system based on wind turbine with battery storage for stand-alone energy systems. It has proven its effectiveness in reducing 200 days of wind speed measurements in only 10 days, allowing sizing the storage system with a significant gain in terms of computing time in the framework of the optimization process

    A review of current induction strategies and emerging prognostic factors in the management of children and adolescents with acute lymphoblastic leukemia

    Get PDF
    Introduction: Acute lymphoblastic leukemia is the most frequent hematologic malignancy in children. Almost 95% of children potentially achieve a complete remission after the induction treatment, but over the last years, new insights in the genomic disease profile and in minimal residual disease detection techniques have led to an improvement in the prognostic stratification, identifying selected patients’ subgroups with peculiar therapeutic needs. Areas covered: According to a comprehensive search of peer-review literature performed in Pubmed, in this review we summarize the recent evidences on the induction treatment strategies comprised in the children acute lymphoblastic leukemia scenario, focusing on the role of key drugs such as corticosteroids and asparaginase and discussing the crucial significance of the genomic characterization at baseline which may drive the proper induction treatment choice. Expert opinion: Current induction strategies already produce durable remissions in a significant proportion of standard-risk children with acute lymphoblastic leukemia. A broader knowledge of the biologic features related to acute lymphoblastic leukemia subtypes with worse prognosis, and an optimization of targeted drugs now available, might lead to the achievement of long-term molecular remissions in this setting

    Un-oriented Quiver Theories for Majorana Neutrons

    Get PDF
    In the context of un-oriented open string theories, we identify quivers whereby a Majorana mass for the neutron is indirectly generated by exotic instantons. We discuss two classes of (Susy) Standard Model like quivers, depending on the embedding of SU(2)_W in the Chan-Paton group. In both cases, the main mechanism involves a vector-like pair mixing through a non-perturbative mass term. We also discuss possible relations between the phenomenology of Neutron-Antineutron oscillations and LHC physics in these models. In particular, a vector-like pair of color-triplet scalars or color-triplet fermions could be directly detected at LHC, compatibly with n-\bar{n} limits. Finally we briefly comment on Pati-Salam extensions of our models.Comment: More comments on phenomenology and fluxes, Re-discussion of SM-quivers compatible with n-cycles conditions Version accepted by JHE

    Neutron Majorana mass from exotic instantons

    Get PDF
    We show how a Majorana mass for the Neutron could result from non-perturbative quantum gravity effects peculiar to string theory. In particular, "exotic instantons" in un-oriented string compactifications with D-branes extending the (supersymmetric) standard model could indirectly produce an effective operator delta{m} n^t n+h.c. In a specific model with an extra vector-like pair of `quarks', acquiring a large mass proportional to the string mass scale (exponentially suppressed by a function of the string moduli fields), delta{m} can turn out to be as low as 10^{-24}-10^{-25} eV. The induced neutron-antineutron oscillations could take place with a time scale tau_{n\bar{n}} > 10^8 s, that could be tested by the next generation of experiments. On the other hand, proton decay and FCNC's are automatically strongly suppressed and are compatible with the current experimental limits. Depending on the number of brane intersections, the model may also lead to the generation of Majorana masses for R-handed neutrini. Our proposal could also suggest neutron-neutralino or neutron-axino oscillations, with implications in UCN, Dark Matter Direct Detection, UHECR and Neutron-Antineutron oscillations. This suggests to improve the limits on neutron-antineutron oscillations, as a possible test of string theory and quantum gravity.Comment: 35 pages, 11 figures. More comments on neutron-neutralino mixin

    Energy-Spin Trajectories in AdS_5 x S^5 from Semiclassical Vertex Operators

    Full text link
    We study the relation between vertex operators in AdS_5 x S^5 and classical spinning string solutions. In the limit of large quantum numbers the treatment of vertex operators becomes semiclassical. In this regime, a given vertex operator carrying a certain set of quantum numbers defines a singular solution. We show in a number of examples that this solution coincides with the classical string solution with the same quantum numbers but written in a different two-dimensional coordinate system. The marginality condition imposed on an operator yields a relation between the energy and the other quantum numbers which is shown to coincide with that of the corresponding classical string solution. We also argue that in some cases vertex operators in AdS_5 x S^5 cannot be given by expressions similar to the ones in flat space and a more involved consideration is required.Comment: 23 pages, 1 Figur

    D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories

    Full text link
    Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared endpoint of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our results, we provide a UV completion of certain D-brane orientifold systems recently claimed to produce conformal field theories with conformal invariance broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references adde

    MSH3 protein expression and nodal status in MLH1-deficient colorectal cancers.

    Get PDF
    View the MathML source: Colorectal tumors manifesting high-frequency microsatellite instability (MSI-H) develop genetically as a consequence of mutations in genes harboring repetitive DNA sequences. The activin type 2 receptor (ACVR2), possessing 2 polyadenine coding sequences, was identified as a mutational target, but it is not clear if expression is abrogated. Here, we analyzed MSI-H colorectal cancers for ACVR2 mutation and expression to assess if biallelic inactivation occurs. View the MathML source: All 54 MSI-H colon cancers and 20 random microsatellite stable (MSS) tumors from a population-based cohort of 503 patients were analyzed for mutations in 2 A8 tracts (exon 3 and 10) of ACVR2 and the A10 tract of transforming growth factor \u3b2 receptor 2 (TGFBR2). Additionally, we sequenced exon 10 of ACVR2 in select cancers. ACVR2 expression was determined by immunohistochemistry using an antibody targeting an epitope beyond the predicted truncated protein. View the MathML source: Forty-five of 54 MSI-H cancers (83%) showed mutation (A8 to A7) in the polyadenine tract of exon 10 compared with no MSS tumors. Of tumors with mutant ACVR2, 62% lacked protein expression but all MSS and MSI-H tumors with wild-type ACVR2 expressed protein. We found no evidence of loss of heterozygosity at the ACVR2 locus in MSS tumors. Comparatively, 69% of MSI-H cancers had frameshift mutation in TGFBR2. View the MathML source:ACVR2 mutations are highly frequent in MSI-H colon cancers and in most cases cause loss of ACVR2 expression, indicating biallelic inactivation of the gene. Loss of activin signaling through mutation of ACVR2, similar to observations with TGFBR2, may be important in the genesis of MSI-H colorectal cancer
    • …
    corecore