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Synthesis of compact wind profiles using evolutionary algorithms
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France; bUniversity of Tunis El Manar, LSE-ENIT, Tunis, Tunisia

In this paper, the authors face the problem of wind speed processing as
environmental variable of a wind turbine system. Generally, the information
on wind speed measurements is processed over long periods of time to be
relevant with respect to the site characteristics (average and maximum speeds,
statistics). Subsequent large scale profiles of wind speed lead to long
processing time for simulation analysis and especially for optimization design
that penalises the search of optimal solutions. An original synthesis approach
of a compact and representative wind speed profile using an Evolutionary
Algorithm (EA) is proposed. This approach is compared to a purely statistical
approach based on random number generators. It allows reducing the actual
wind profile duration with compression ratios greater (two months of wind
speed measurements are compressed in only 1 h). Then, the synthesis
approach by EA is applied to the sizing of an autonomous hybrid system
based on wind turbine with battery storage for stand-alone energy systems. It
has proven its effectiveness in reducing 200 days of wind speed measurements
in only 10 days, allowing sizing the storage system with a significant gain in
terms of computing time in the framework of the optimization process.

Keywords: wind profile synthesis; evolutionary algorithm; inverse problem;
statistical analysis; wind turbine system

1. Introduction

This study is part of a system design approach for a wind turbine for which the sizing
environmental variable is the wind speed. Because of its intermittent and fluctuating
features, it is mandatory to assess the statistical characteristics of this primary energy
vector. For that purpose, various methods have been then developed in order to provide
temporal wind profiles.[1–5] Nevertheless, those approaches generally require the
simulation of wind over long periods of time in order to evaluate the efficiency of a
given system. This can be an important drawback in a context of integrated design by
optimization [6] where the system simulations have to be repeated according to design
variable variations. This issue was particularly shown in [7,8] through the example of a
passive wind turbine sized from an optimization approach. In such case, the computing
time required for sizing optimal wind turbine solutions strongly depends on the wind
speed profile duration used to characterise the system behaviour and its efficiency.
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Therefore, it is thus advisable to consider a wind speed profile of minimum duration
but which remains relevant with regard to the objectives and constraints in the
integrated design process.

In [9], the authors propose to solve this problem by generating a wind speed profile
with a reduced duration based on the use of classification methods. Their approach
consists in merging into one class, temporal sequences characterised by similar statistical
distributions. The similarity between the distributions of temporal sequences to be classi-
fied can be described by the first statistical moment (average, standard deviation) or more
precisely by the overall characteristics of the statistical distribution by considering all sta-
tistical moments.[10] The representative temporal profile of each class is a real sequence
of 10min duration. Three classes of typical wind were identified from 106 temporal wind
speed sequences of 10min measured at the site of ‘Petit Canal’ in Guadeloupe.[10]

In this paper, two synthesis approaches of wind speed profile with reduced duration
are studied. The first concerns a purely statistical approach established in [11] and is
based on random number generators for which the associated probability density
functions are derived from the statistical distribution of real wind speed measurements.
Complementary to this study, the authors propose a more realistic consideration of the
fast wind speed dynamics characteristic of the turbulence phenomenon. The second
approach is based on a synthesis process of a representative and compact wind speed
profile. It consists of generating a fictitious compact profile for which the characteriza-
tion indicators (maximum and average speeds, wind energy content) correspond to the
real data reference characteristics. This compact and simplified profile is obtained by
solving an inverse problem by aggregating elementary segments whose parameters are
determined using an Evolutionary Algorithm (EA). The suggested EA-based approach
can be viewed as a ‘compaction’ method but is radically different from traditional
compression techniques used in signal and image processing described in [12]. It only
preserves some signal features represented by typical targets or indicators that can be
useful in a particular context (e.g. wind speed features which are relevant with regard
to the sizing of electrical components of wind turbines).

Finally a comparative study of both approaches for the same simulation cost is estab-
lished and the synthesis process of wind speed representative profile is applied for sizing
an autonomous hybrid system based on wind turbine and batteries as storage elements.

2. Statistical based synthesis approach

The first synthesis method of a wind speed profile is based on a purely statistical
approach. It consists in generating a continuous temporal profile from the statistical
distribution of the measured wind speed. Among the probability rules (density) that
can characterise the statistical distribution of the average wind speed, we note the
log-ormal distribution, the Gaussian distribution and the Weibull distribution.[13–15]
This latter distribution is often more appropriate to describe statistical properties of the
average wind speed.[16,17] The expression of the probability density of the Weibull
distribution according to the average wind speed (�v) is:

f ð�vÞ ¼ k
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c

� �k�1

exp � �v

c
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where k is the shape factor and c is the scale parameter related to the average wind
speed.

The Figure 1 shows the wind speed distribution for two months of measurements
on the site of ‘Petit Canal’ in Guadeloupe with a sampling step of 10min. This distribu-
tion is identified as a Weibull distribution (k = 3.03 and c= 10.62) from a standard least
mean square algorithm.

In a previous study,[11] the instantaneous wind speed has been decomposed in two
different dynamics: a slow dynamic, which characterises the variation of the average
wind speed according to a Weibull distribution and a fast dynamic characterising the
turbulence phenomenon according to a Gaussian distribution [18] (see Figure 2). Note
that the wind turbulence is an important phenomenon because it is coupled to
mechanical stress of wind turbines.

According to the slow dynamic, the statistical approach consists in generating a
wind speed signal satisfying a statistical distribution established from data of the
average wind speed measured in intervals of 10min.[19] A certain number of samples
is generated with a random number generator according to the established statistical
distribution.

In the case of a Weibull distribution, the random number generator W(c, k) is
defined from the inverse transformation of the cumulative distribution function
associated with the probability density given by Equation (1). Referring to a random
number generator with uniform density in the interval [0, 1] (U(0, 1)) and knowing the
parameters of the Weibull distribution (c and k), the expression of the random number
generator W (c, k) is given by Equation (2).[20]

W ðc; kÞ ¼ c � lnUð0; 1Þð Þ1k ð2Þ

The continuous temporal profile is then obtained by the interpolation of the Ne

generated samples. The integration of the wind turbulence in the temporal profile is
performed according to the fast dynamic. On each sampling period Te of the slow
dynamics, wind turbulence is modelled by a Gaussian noise with a mean equals to zero
( μ= 0) and a standard deviation σ. The representative signal of the turbulence is
generated from a random number generator with Gaussian density. The same principle
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Figure 1. Identification of the wind speed statistical distribution on the site of ‘Petit Canal’ at a
Weibull distribution.



as the Weibull density generator is used (see Figure 3) except that the sampling period
te is very small compared to Te. Finally, the wind speed representative profile is
obtained by the sum of the slow component (�v) generated from the Weibull density and
the fast component (Dv).

In [11], the standard deviation σ of the Gaussian distribution (i.e. the turbulence
intensity) was considered as constant along the generated wind speed profile. In this
paper, we propose to make the statistical approach more realistic by generating the
turbulence (Gaussian noise) with a variable standard deviation σ. Through an analysis
phase of measured wind speed data, the distribution of the fast component is identified,
on each interval i of duration Te, to a Gaussian distribution characterised by a standard
deviation σi. Next, we determine the statistical distribution Dσ of the standard deviations
(σi). In the generated wind speed profile, on each sampling period Te, the standard
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Figure 2. Generating process of the wind speed representative profile based on statistical
approach.
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Figure 3. Wind speed statistical distribution on the site of ‘Petit Canal’ in Guadeloupe on some
temporal windows of 10min.



deviation of the Gaussian noise is determined from a random number generator based
on the same probability density as the statistical distribution of standard deviations (Dσ)
(see Figure 2).

The Figure 3 shows the wind speed statistical distribution on the site of ‘Petit
Canal’ in Guadeloupe on some temporal windows of 10min. We verify that these
distributions follow a Gaussian function with parameters ( μ, σ), centred on the mean
value of the slow component of the wind speed over the temporal window of 10min:

f ðvÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp �ðv� lÞ2
2r2

 !
ð3Þ

The statistical distribution Dσ of standard deviations (σi) on two months of wind
speed measurements on the site of ‘Petit Canal’ is given by the histogram of Figure 4.
This distribution is identified from a standard least mean square method with a Gamma
density with α= 7.9 and β= 11.3 as parameters. The corresponding probability density f
(σ) is given by Equation (4).[20]

f ðrÞ ¼ ba

CðaÞ r
a�1 expð�brÞ ð4Þ

where Г is the Gamma function. The inversion of the cumulative distribution function
associated with this probability density allows generating the turbulence intensity in the
synthesis process of Figure 2. Three simulation results of the statistical approach for the
generation of a wind speed profile (12, 24 and 48 h duration) are given in Figure 5(a):
these synthesised profiles are representative of two months of wind speed measurements
on the site of ‘Petit Canal’. The sampling period of the wind slow component Te is set
to 10min and that of the fast dynamics (turbulence) te is fixed to 1 s. Those values are
in accordance with the corresponding frequencies issued from the well-known Van der
Hoven’s spectral distribution.[21,22] We then obtain respectively 72, 144 and 288
samples by the Weibull generator (k = 3.03 and c = 10.65) and 600 samples by the
Gaussian generator for each time interval Te. The Figure 5(b) shows a comparison
between the statistical distribution functions ( pdf ) of the generated (12, 24 and 48 h
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duration) and original (2months duration) profiles. The more duration increases (the
number of sample increases), the more generated profile pdf is similar to the reference
pdf. We conclude that the statistical approach requires long durations to better represent
the actual profile.

Through an analysis of the fast dynamic of the obtained profile, it is shown that the
statistical distribution of some temporal windows of 10min does not exactly follow a
Gaussian distribution. This difference is due to the strong wind speed variations
between two successive samples obtained from the Weibull generator and distant of a
period Te. This phenomenon modifies the statistical distribution of the fast component
of wind speed (initially a Gaussian distribution). To rectify this problem, one solution is
to increase the sampling time of the Weibull generator (for example 5Te instead of Te)
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Figure 5. Results of the statistical approach for a three time horizon: 12, 24 and 48 h.



in order to enhance the decoupling of slow and fast dynamics. However, this solution is
limited in terms of representative profile duration. Indeed, the choice of a sampling
period multiple of Te increases the generated profile duration and therefore increases the
computing time of design models, being especially critical in an optimization context.

We present in Figure 6, a simulation of the statistical approach with a sampling
period of 5Te (the samples obtained by Weibull generator are separated by
5Te = 50min). We obtain a profile with a duration of 120 h (5 days) having a statistical
distribution ( pdf ) very similar to the reference distribution that characterises the two
months of wind speed measurements on the site of ‘Petit Canal’ (see Figure 6(b)).
Furthermore, one can verify that the statistical distribution of the generated fast dynam-
ics follows a Gaussian distribution on each temporal window of 10min (see Figure 7).

In conclusion, this statistical approach allows generating wind speed profiles which
are relatively realistic as long as the duration of the synthesised profiles is sufficiently
high. However, it does not guarantee to be relevant with regard to the air mass
acceleration. In other words, no constraints are imposed on the wind speed variations
between two successive samples of the random number generators.

3. Compact and representative synthesis approach by EA

In this section, a second approach is proposed for synthesising a compact and
representative profile of an actual wind speed profile. This approach consists in
generating a fictitious wind speed profile by fulfilling some constraints (typically
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Figure 6. Results of the statistical approach for a time horizon of 120 h.
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minimum, maximum and average values, and probability distribution function). These
constraints are expressed in terms of target indicators that can be evaluated from a set
of actual profiles or from a single reference profile of large duration (for example some
months/years of data).

3.1. Principle

The synthesis process of compact wind profiles is based on the approach developed in
[23] for railway driving missions. It consists in generating a fictitious profile of any
environmental variable (e.g. temperature, wind speed, solar irradiation) by fulfilling
some constraints related to the variables (typically minimum, maximum and average
values and probability distribution function). These constraints are expressed in terms
of target indicators that can be evaluated from a set of real cycles or from a single real
cycle of large duration. The fictitious profile is obtained by aggregating elementary
patterns (segments) as shown in Figure 8. Each segment is characterised by its
amplitude ΔSn (ΔSmin ref6ΔSn6ΔSmax ref) and its duration Δtn (06Δtn6Δtcompact). A
time scaling step is performed after the profile generation in order to fulfil the constraint
related to the time duration, i.e. ΣΔtn=Δtcompact. Finding a compact fictitious profile of
an environmental variable consists in finding all segment parameters so that the
generated profile fulfils all target indicators on the reduced duration Δtcompact. This
results in solving an inverse problem with 2Nm parameters where Nm denotes the
number of segments in the compact profile. This can be done using EAs [24,25] and
especially with the clearing method [26] well suited to treat this kind of problem with
high dimensionality and high multimodality.

In addition to the choice of the parameters of each pattern, the EA is encoded so
that the number of segments (Nm) can be itself optimised through a self-adaptive
procedure.[23] Indeed, contrary to the classical chromosome encoding strategies which
encods the same number of patterns for all individuals in the population (Figure 9(a)), a
second strategy allowing the parallel investigation of signal configurations with distinct
number of patterns is proposed (Figure 9(b)). It consists in encoding in the chromosome
an additional gene representing the number of patterns. This number can vary from 1 to
Nm max, Nm max denoting the maximum number of patterns. However, it should be noted
that the chromosome is identical for all individuals in the population, containing the
parameters associated with Nmmax patterns. Then, only a part of the chromosome is
considered in the individual decoding according to value of the gene associated with

t
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Figure 8. Principle of the profile generation.



the number of patterns. The other genes are not expressed and can be considered as
‘recessive’. They are not used in the individual decoding but participate to crossover
and mutation operations. Moreover, the EA is implemented using real-encoded decision
variables, standard binary tournament selection, classical BLX-0.5 crossover [27] with
maximum crossover rate ( pc = 1) and random mutation with probability pm= 1/n where
n denotes the total number of decision variables. The clearing procedure used as nich-
ing method is coded with a niche capacity of 1 and with a classical elitism scheme.[26]

The synthesis process of wind speed profile by means of optimization is given in
Figure 10. The aim is to minimize the error function ɛ expressed by Equation (5). This
function represents the overall gap between the reference values of specific indicators
(Ij ref) from the actual wind speed profile and those of the generated profile (Ij). These
indicators will be detailed in the following subsection.

e ¼
X
j

IjðXÞ � Ij ref
Ij ref

� �2

ð5Þ
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In addition to the error function minimization, it may be necessary to impose some
constraints on the generated profile (minimum and maximum values of standard
deviation). These constraints (Ck) are formulated in terms of inequalities (Ck(X)6 0)
and integrated into the error function in the form of penalties:

e ¼
X
j

IjðXÞ � Ij ref
Ij ref

� �2

þ
X
k

kk maxð0;CkðXÞÞ2 ð6Þ

where λk is a penalty factor associated to the kth constraint and X denotes an individual
chromosome (real encoded vector containing the parameters of the elementary patterns).

3.2. Specific indicators of wind speed

An analysis phase of the wind speed in the temporal and statistical plan allowed us to
propose a set of specific indicators related to the main design criteria of wind turbine
systems:

• Maximum speed value: Vmax

This indicator takes account of wind gusts when sizing the wind turbine.

Vmax ¼ max
t2½0 Dtprofile �

V ðtÞ ð7Þ

where Δtprofile denotes the duration of the reference wind profile.

• Average cubic wind speed value: hV3i
The average cubic wind speed value hV3i is used instead of the average wind speed
value hVi because the power produced by the wind turbine (PWT) is directly
proportional to the cubic wind speed value as shown in Equation (8).

PWT ¼ 1

2
qCpSV

3 ð8Þ

where ρ denotes the air density in kgm�3, S indicates the area swept by the wind
turbine blades in m2, Cp represents the power coefficient defined by the ratio between
the power captured by the wind turbine and the initial power of the air mass flowing
through the area S at the speed V.

• Probability density function: pdf
It is relevant to take account of the wind speed statistical distribution ( pdf ) in the wind
turbine design. The representative profile to be generated must then fulfil the same
statistical distribution as the actual wind speed measured over a longer duration.

• The wind turbulence: Iturb
Wind turbulence is a crucial phenomenon in the estimation of the wind turbine lifetime
(mechanical stress). It is then important to integrate an indicator to characterise the
turbulence in the representative temporal profile. We then characterise the wind



turbulence, on each interval i of duration Te = 10min, by the standard deviation σi.[28]
We define the turbulence indicator Iturb of the wind profile by the average value of
standard deviations σi.

Iturb ¼ hrii where i ¼ 1; integer partðDtprofile=TeÞ
� � ð9Þ

3.3. Results of the synthesis process of the representative profile

As previously, the reference values of the indicators are determined from two months of
wind speed measurements on the site of ‘Petit Canal’ in Guadeloupe. Nevertheless, the
choice of the representative profile duration is not obvious. Although the specific
indicators of wind speed do not impose any minimum duration, the generated profile
must include a sufficient number of samples in order to fulfil the reference statistical
distribution ( pdfref). The error function to be optimised is given by the following
expression:

e ¼ VmaxðXÞ � Vmax ref

Vmax ref

� �2

þ hV ðXÞ3i � hV 3iref
hV 3iref

 !2

þ IturbðXÞ � Iturb ref
Iturb ref

� �2

þ estat ð10Þ

where ɛstat represents the mean square error between the reference statistical distribution
(pdfref) and that of the generated profile (pdfgen) evaluated from 20 equal intervals of
width Vmax ref/20.

estat ¼ 1

20
�
X20
k¼1

pdfgenðX; kÞ � pdfref ðkÞ
pdfref ðkÞ

� �2

ð11Þ

The Figure 11 gives a process result of a representative profile with a 3 h duration
(compared with the initial duration of two months, i.e. almost 1500 h). The EA
population size is set to 100 and the generation number is equal to 105. The obtained
number of elementary patterns (number of segments) is 217.
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Figure 11. Synthesis process result of representative profile of a 3 h duration.



The characteristics of the generated wind speed profile are given in Table 1. The
obtained results are perfect in the sense of specific indicators while two months of wind
speed measurements (�1500 h) are compacted in a ratio 500 (�1500/3).

A second solution to enhance compacity of the generated profile duration is to
integrate the phenomenon of turbulence as a constraint in the synthesis optimization
process. Instead of imposing an average standard deviation as turbulence indicator, a
range of variation of the standard deviation between a minimum and a maximum value
respectively σmin and σmax has been considered. The turbulence indicator is no longer
represented by an optimization criterion but instead by the two constraints σmin and
σmax. For two months of wind speed measurements on the site of ‘Petit Canal’, the
standard deviation of wind speed intervals (Te = 10min) varies between σmin = 0.05m s�1

and σmax = 4.9m s�1. An illustration of this solution for one hour generated profile
duration is given in Figure 12(a). This wind speed profile is obtained by the concatena-
tion of 105 segments. The generation number is equal to 15,000 which only
corresponds to 5 hours of computation with a standard computer (Core Duo 2 GHz).
Note that, despite the complexity of the inverse problem (211 parameters), the EA
converges towards a very convenient solution respecting the constraint related to the
turbulence phenomenon. Indeed, the Figure 12(b) shows that the statistical distribution
of the generated profile perfectly corresponds with the reference distribution. The
Table 2 also shows the low difference between the reference indicators and the
generated profile indicators.

Finally, the synthesis approach by EA is very efficient in terms of accuracy and
reduction of the real wind speed profile duration. Indeed, two months of wind speed
measurements are compressed in 1 h only. Consequently, this reduction provides a
significant gain in terms of computing time which is particularly useful in the
framework of wind turbine system design by optimization.

Table 1. Comparison of the generated profile indicators to the reference indicators.

Reference indicators Generated profile indicators Error (%)

Vmax (m s�1) 23.1 23.1 0.0
hV3i (m3 s�3) 1076 1076 0.0
Iturb 0.72 0.74 2.7
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Figure 12. Synthesis process result of representative profile of a 1 h duration.



4. Comparison of the two synthesis approaches

In this section, the statistical synthesis approach is compared with the EA-based
synthesis approach by considering the same conditions in terms of computation time
with the same computer. 5 h of computation time are chosen which corresponds to the
convergence time required for synthesis approach by EA to generate a representative
profile from two months of wind speed measurements on the site of ‘Petit Canal’ in
Guadeloupe. Regarding the statistical synthesis approach, we proceed to generate a
wind speed profile by successive iterations during 5 h of computation time. At each
iteration, the obtained profile is retained if it improves the same error function ɛ used in
the synthesis approach by EA (see Equation (12)). This error function aims at
simultaneously optimising the maximum wind speed value, the average cubic wind
speed value and the statistical distribution. In order to simplify this comparison, the
turbulence indicator has not been considered here. The error function evolution over 5 h
of computation is given in Figure 13.

e ¼ Vmax � Vmax ref

Vmax ref

� �2

þ hV 3i � hV 3iref
hV 3iref

� �2

þ 1

20
�
X20
k¼1

pdf ðkÞ � pdfref ðkÞ
pdfref ðkÞ

� �2

ð12Þ

The representative profile duration is set to 1 h in the synthesis approach by EA and
5 days (120 h) in the statistical synthesis approach. This difference between the
durations of representative profiles is related to the characteristics of each approach.
Indeed, the statistical approach is not very relevant with short durations due to low
number of samples while the synthesis approach by EA allows obtaining short duration

Table 2. Comparison of the generated profile indicators to the reference indicators.

Reference indicators Generated profile indicators Error (%)

Vmax (m s�1) 23.1 23.1 0.0
hV3i (m3 s�3) 1076 1078 0.2
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Figure 13. Error function evolution for the two synthesis approaches.



profiles (1 h). The characteristics of the representative profiles obtained after 5 h of
computing time on a standard PC (Core Duo 2 GHz) are given in Figure 14 and
Table 3.

The obtained results show that the EA-based synthesis approach provides a better
accuracy with respect to all indicators. In particular, the statistical distribution of the
obtained profile perfectly follows the reference statistical distribution. Conversely
significant differences can be observed in the case of the statistical approach (see
Figure 14). In addition, the synthesis approach by EA leads to more compact duration
of the representative profile. Indeed, two months of wind speed measurements are only
represented by a profile of one hour duration.
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Figure 14. Comparison of generated profiles by the two synthesis approaches – time series and
associated distributions.

Table 3. Comparison of generated profiles characteristics by the two synthesis approaches.

Vmax (m s�1) hV3i (m3 s�3)

Reference indicators 23.1 1076
Generated profile indicators
EA approach 23.1 1078
Statistical approach 22.2 1077

Error (%)
EA approach 0 0.2
Statistical approach 3.9 0.1



5. Application of the synthesis approach by EA to a stand-alone wind system
hybridised with storage

In this section, the interest of the compact and representative synthesis approach of a
wind speed profile is illustrated on the sizing of a simple stand-alone system. The
system is composed of a given 8 kW passive wind turbine [7,29] hybridised with a lead
acid battery pack. The system is supposed to supply a periodic load profile Pload (24 h
period). The problem here only consists in sizing the battery bank considering a given
wind turbine and a wind farm potential represented by a reference wind profile resulting
from 200 days of wind speed measurements. Unlike the previous case where the
indicators are directly related to the wind speed characteristics, the indicators used in
this application are also related to the sizing constraints on the storage system. Three
particular indicators are considered: PBTmax, PBTmin and Es which respectively denote
the maximum and the minimum storage powers in the battery and the storage useful
energy defined by Equation (13).[30] These indicators represent the physical variables
required for the battery bank sizing.

The reference values of these indicators are extracted from the simulation of the
wind speed actual profile of 200 days duration (see Figures 15 and 16). Note that the
reference value of the storage useful energy Esref is defined as follows:

Esref ¼ maxEBTðtÞ �minEBTðtÞ ð13Þ

where EBTðtÞ ¼
R t
0 PBTðsÞds ¼

R t
0 ðPWTðsÞ � PloadðsÞÞds t 2 ½0; 200 days�

PBT, PWT and Pload are respectively the battery power, the power supplied by the
wind turbine and the load power.

It should be noted that EBT(t) is a saturated integral with 0 as upper limit so that the
battery storage is only sized in discharge mode to avoid its oversizing during wide charge
period (huge winds with reduced load). An additional target indicator is considered to
take account of statistic features of the reference wind cycle. We use the cumulative
distribution function cdfref computed from the corresponding probability density function
pdfref related to the reference wind speed behaviour.[31] The pdfref is evaluated from 20
equally spaced intervals between 0 and the maximum wind speed value.

Finally, the global error ɛ to be minimised in the synthesis profile process can be
expressed as:

e ¼ PBTmax � PBTmax ref

PBTmax ref

� �2

þ PBTmin � PBTmin ref

PBTmin ref

� �2

þ Es � Es ref

Esref

� �2

þestat ð14Þ

where the statistic error ɛstat denotes the mean squared error between both cdfs relative
to reference and generated wind speed profiles:

estat ¼ 1

20
�
X20
k¼1

cdf ðkÞ � cdfref ðkÞ
cdfref ðkÞ

� �2

ð15Þ

All ‘ref’ indexed variables are based on the reference wind profile of Figure 16.
The inverse problem has been solved with the ‘clearing’ algorithm using a population
size of 100 individuals and a number of generations of 500,000. Multiple optimization



runs were performed with different compaction time Δtcompact. In particular, the
minimum compaction time (i.e. min (Δtcompact)) was determined using dichotomous
search in order to ensure a global error ɛ less than 10�2. The Table 4 shows the values
of the global error ɛ vs. the compaction time. It can be seen that the lowest value for
Δtcompact ensuring the fulfilment of the target indicators with sufficient accuracy is about
10 days. The Figure 17 shows the characteristics of the generated wind profile obtained
from the aggregation of 109 elementary segments fulfilling all target indicators. It can
be seen from this figure that the cdf of this compact wind profile closely coincides with
that of the reference wind profile.

Batteries

Actual wind
profile (200 days)

Passive wind
turbine

Load profile

PBTmax ref ,  PBTmin ref ,  Esref ,  cdfref

Extraction of indicators reference values 

PBT

PloadPWT

Figure 15. Extraction of indicator reference values from the actual wind speed profile of
200 days duration.
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Figure 16. Actual reference wind speed profile and corresponding storage power/energy.



The Table 5 compares the values of the target indicators related to the battery sizing
for the reference and the fictitious profile generated with the ‘clearing’ algorithm. A
good agreement between those values indicates that the compact wind profile would
lead to the same battery sizing as the reference wind profile with longer duration
(200 days).

6. Conclusion

In this paper, two different approaches have been developed for compacting wind speed
profiles. The first concerns a purely statistical approach based on random number
generators with probability density functions derived from the statistical distribution of
actual wind speed data. The authors have proposed a more realistic consideration of the
fast wind speed dynamics representative of the turbulence phenomenon.

In a second approach, a synthesis process of representative wind speed profile of
reduced duration has been developed. This process is based on the aggregation or
concatenation of elementary patterns which the number and the parameters are
determined by an EA optimization. It allows synthesising a fictive and compact wind
speed profile which verifies a set of pertinent indicators with regard to design criteria

Table 4. Influence of Δtcompact on the global error ɛ.

Δtcompact (days) 40 20 10 5

Global error ɛ ≈8� 10�3 ≈9� 10�3 ≈9� 10�3 ≈7� 10�2
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Figure 17. Synthesis process result of representative profile over a 10 days duration.

Table 5. Target indicators of the generated wind speed profile.

Reference indicators Generated profile indicators Error (%)

PBTmax (kW) 30 30 0.0
PBTmin (kW) �5.88 �5.82 0.1
Es (kWh) 32.36 32.4 0.12



and constraints. Two months of wind speed measurements are compressed in only 1 h.
Consequently, this reduction provides a significant gain in terms of computing time in
the framework of the optimization process of wind turbines.

Then, a comparative study of the two synthesis approaches for the same computing
cost has been established. Note that the synthesis approach by EA gives the advantage
of a more compact duration of representative profiles.

Finally, the synthesis approach by EAwas applied for sizing a stand-alone hybrid sys-
tem based on wind turbine and batteries as storage elements. The indicators considered in
this application are related to storage device features. The synthesis approach by EA has
proven its effectiveness in reducing 200 days of wind speed measurements in only
10 days, allowing sizing the storage system with a significant gain in terms of computing
time in the framework of the optimization process. Note that this synthesis approach is
very generic, which can exceed the particular field of wind turbines design to be applied
in the whole range electrical engineering applications and even beyond, by processing
any types of environmental variables (wind speed but also temperature, sun irradiation,
etc.) or for example of railway driving profiles as proposed in [23].
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