7 research outputs found

    Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    Get PDF
    Direct measurements of the turbulent air–sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind–wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source

    Microstructural characterisation of a nickel alloy processed via blown powder direct laser deposition (DLD)

    Get PDF
    A three dimensional structure of varying wall thickness has been manufactured from an alloy similar to 718 and subjected to metallographic characterisation. The technique is evaluated as a process capable of generating complex geometries. This can be used to add features or as a free form fabrication method. However, in order to allow for comparison to structures developed through more traditional techniques, detailed microstructural characterisation has been undertaken to attempt to understand the potential effect of variation on resultant mechanical properties.Samples were extracted from six locations with different wall thicknesses, intricate features and intersecting ligament geometry. A γ″ linearly arrayed structure within a γ matrix was consistent throughout the component. Micro-porosity was restricted to isolated, spherical pores < 1 μm in diameter. Electron back-scatter diffraction and X-ray computed microtomography quantitative microstructural analysis techniques have been utilized to assess the influence of layering upon microporosity, patternation and grain structure.A detailed comparison is also made between blown powder Direct Layer Deposition (DLD) and a similar deposition technique, shaped metal deposition (SMD). Blown powder DLD produces a smaller weld pool and results in a more consistent microstructure than SMD, with less evidence of unfavourable phases brought about by prolonged exposure to high temperatures. The improved microstructure, however, must be measured against the different process economics of the blown powder DLD technique

    Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate

    No full text
    International audienceThe strength of the Atlantic Meridional Overturning Circulation, a key indicator of the climate state, is maintained by the subduction of dense water that feeds the deep southwards branch. At present, this subduction occurs almost entirely in the subpolar region, in the Labrador, Irminger and Nordic seas; however, whether this will continue under climate change is unknown. Here we use a quantitative Lagrangian diagnostic applied to climate model output to show that, in response to warming, the main source regions of this mixed-layer subduction shift northwards to the Arctic Basin and southwards to the subtropical gyre. These shifts are explained by changes in background stratification, mixed-layer depth and ocean circulation, highlighting the need to consider the full three-dimensionality of the circulation and its changes to accurately predict the future climate state

    Laser Powder Deposition

    No full text
    corecore