3,289 research outputs found

    New quasars behind the Magellanic Clouds. Spectroscopic confirmation of near-infrared selected candidates

    Get PDF
    Context. Quasi-stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore- and background contamination. Deep wide-field, high angular resolution surveys spanning the entire area of nearby galaxies are needed to obtain a complete census of such quasars. Aims. We embarked on a program to expand the quasar reference system behind the Large and the Small Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream that connects the Clouds with the Milky Way. Methods. Hundreds of quasar candidates were selected based on their near-infrared colors and variability properties from the ongoing public ESO VISTA Magellanic Clouds survey. A subset of 49 objects was followed up with optical spectroscopy. Results. We confirmed the quasar nature of 37 objects (34 new identifications): four are low redshift objects, three are probably stars, and the remaining three lack prominent spectral features for a secure classification. The bona fide quasars, identified from their broad emisison lines, are located as follows: 10 behind the LMC, 13 behind the SMC, and 14 behind the Bridge. The quasars span a redshift range from z ~ 0.5 to z ~ 4.1. Conclusions. Upon completion the VMC survey is expected to yield a total of ~1500 quasars with Y< 19.32 mag, J< 19.09 mag, and Ks< 18.04 mag

    Towards a fundamental astrometric reference system behind the Malleganic clouds : spectroscopic confirmation of new quasar candidates selected in the near-infrared

    Get PDF
    Quasi-stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore- and background contamination. We have embarked on a programme to expand the quasar reference system behind the Large and Small Magellanic Clouds, the Magellanic Bridge and Magellanic Stream. Hundreds of quasar candidates were selected, based on their near-infrared colours and variability properties from the ESO VISTA Magellanic Clouds (VMC) Public Survey. A subset of 49 objects was followed up with optical spectroscopy with FORS2. We confirmed the quasar nature of 37 objects (34 new identifications) that span a redshift range from z ~ 0.5 to 4.1

    Propagation of supersymmetric charged sleptons at high energies

    Full text link
    The potential for neutrino telescopes to discover charged stau production in neutrino-nucleon interactions in Earth depends in part on the stau lifetime and range. In some supersymmetric scenarios, the next lightest supersymmetric particle is a stau with a decay length on the scale of 10 km. We evaluate the electromagnetic energy loss as a function of energy and stau mass. The energy loss parameter β\beta scales as the inverse stau mass for the dominating electromagnetic processes, photonuclear and e+ee^+e^- pair production. The range can be parameterized as a function of stau mass, initial energy and minimum final energy. In comparison to earlier estimates of the stau range, our results are as much as a factor of two larger, improving the potential for stau discovery in neutrino telescopes.Comment: 7 pages, 8 figures, version accepted for publication in Astroparticle Physic

    Towards a Fundamental Astrometric Reference System behind the Magellanic Clouds: Spectroscopic Confirmation of New Quasar Candidates Selected in the Near-infrared

    Get PDF
    Quasi-stellar objects (quasars) locatedbehind nearby galaxies provide anexcellent absolute reference system forastrometric studies, but they are diffi-cult to identify because of fore- andbackground contamination. We haveembarked on a programme to expandthe quasar reference system behindthe Large and Small Magellanic Clouds,the Magellanic Bridge and MagellanicStream. Hundreds of quasar candidateswere selected, based on their near-infrared colours and variability proper-ties from the ESO VISTA MagellanicClouds (VMC) Public Survey. A subsetof 49 objects was followed up with opti-cal spectroscopy with FORS2. We con-firmed the quasar nature of 37 objects(34 new identifications) that span a red-shift range from z ~ 0.5 to 4.1.Fil: Ivanov, Valentin D.. No especifíca;Fil: Cioni, Maria Rosa L.. Universitat Potsdam; Alemania. Leibniz-Institut für Astrophysik Potsdam; Alemania. University of Hertfordshire; Reino UnidoFil: Bekki, Kenji. The University of Western Australia; AustraliaFil: de Grijs, Richard. Peking University; China. International Space Science Institute; ChinaFil: Emerson, Jim. Queen Mary University of London; Reino UnidoFil: Gibson, Brad K.. University of Hull; Reino UnidoFil: Kamath, Devika. Instituut voor Sterrenkunde; BélgicaFil: van Loon, Jacco Th.. Keele University; Reino UnidoFil: Piatti, Andres Eduardo. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: For, Bi Qing. The University of Western Australia; Australi

    A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method

    Get PDF
    The reduction in H2/CH4 atmosphere of aluminum-iron oxides produces metal particles small enough to catalyze the formation of single-walled carbon nanotubes. Several experiments have been made using the same temperature profile and changing only the maximum temperature (800-1070 °C). Characterizations of the catalyst materials are performed using notably 57Fe Mo¨ssbauer spectroscopy. Electron microscopy and a macroscopical method are used to characterize the nanotubes. The nature of the iron species (Fe3+, R-Fe, ç-Fe-C, Fe3C) is correlated to their location in the material. The nature of the particles responsible for the high-temperature formation of the nanotubes is probably an Fe-C alloy which is, however, found as Fe3C by postreaction analysis. Increasing the reduction temperature increases the reduction yield and thus favors the formation of surface-metal particles, thus producing more nanotubes. The obtained carbon nanotubes are mostly single-walled and double-walled with an average diameter close to 2.5 nm. Several formation mechanisms are thought to be active. In particular, it is shown that the second wall can grow inside the first one but that subsequent ones are formed outside. It is also possible that under given experimental conditions, the smallest (<2 nm) catalyst particles preferentially produce double-walled rather than single-walled carbon nanotubes

    A study on the sharp knee and fine structures of cosmic ray spectra

    Full text link
    The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such kind of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called "component B" of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.Comment: 13 pages, 4 figures, accepted for publication in SCIENCE CHINA Physics, Mechanics & Astronomy

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore