170 research outputs found

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    Get PDF
    BACKGROUND: It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. METHODS: To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein): pregnant (N), tumor-bearing (WN), pair-fed rats (Np). Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine): leucine (L), tumor-bearing (WL) and pair-fed with leucine (Lp). Non pregnant rats (C), which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. RESULTS: Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. CONCLUSIONS: Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones

    Astrocytes grown in Alvetex® 3 dimensional scaffolds retain a non-reactive phenotype

    Get PDF
    yesProtocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embroynic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype.BBSR

    Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure.</p> <p>Results</p> <p>We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods.</p> <p>Conclusions</p> <p>We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at <url>http://comp.chem.nottingham.ac.uk/disspred/</url>.</p

    Identification and Characterization of a Leucine-Rich Repeat Kinase 2 (LRRK2) Consensus Phosphorylation Motif

    Get PDF
    Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknown, we set out to reveal potential targets of LRRK2 G2019S by identifying its favored phosphorylation motif. A non-biased screen of an oriented peptide library elucidated F/Y-x-T-x-R/K as the core dependent substrate sequence. Bioinformatic analysis of the consensus phosphorylation motif identified several novel candidate substrates that potentially function in neuronal pathophysiology. Peptides corresponding to the most PD relevant proteins were efficiently phosphorylated by LRRK2 in vitro. Interestingly, the phosphomotif was also identified within LRRK2 itself. Autophosphorylation was detected by mass spectrometry and biochemical means at the only F-x-T-x-R site (Thr 1410) within LRRK2. The relevance of this site was assessed by measuring effects of mutations on autophosphorylation, kinase activity, GTP binding, GTP hydrolysis, and LRRK2 multimerization. These studies indicate that modification of Thr1410 subtly regulates GTP hydrolysis by LRRK2, but with minimal effects on other parameters measured. Together the identification of LRRK2's phosphorylation consensus motif, and the functional consequences of its phosphorylation, provide insights into downstream LRRK2-signaling pathways

    Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    Get PDF
    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans

    The psychology of memory, extended cognition, and socially distributed remembering

    Get PDF
    This paper introduces a new, expanded range of relevant cognitive psychological research on collaborative recall and social memory to the philosophical debate on extended and distributed cognition. We start by examining the case for extended cognition based on the complementarity of inner and outer resources, by which neural, bodily, social, and environmental resources with disparate but complementary properties are integrated into hybrid cognitive systems, transforming or augmenting the nature of remembering or decision-making. Adams and Aizawa, noting this distinctive complementarity argument, say that they agree with it completely: but they describe it as “a non-revolutionary approach” which leaves “the cognitive psychology of memory as the study of processes that take place, essentially without exception, within nervous systems.” In response, we carve out, on distinct conceptual and empirical grounds, a rich middle ground between internalist forms of cognitivism and radical anti-cognitivism. Drawing both on extended cognition literature and on Sterelny’s account of the “scaffolded mind” (this issue), we develop a multidimensional framework for understanding varying relations between agents and external resources, both technological and social. On this basis we argue that, independent of any more “revolutionary” metaphysical claims about the partial constitution of cognitive processes by external resources, a thesis of scaffolded or distributed cognition can substantially influence or transform explanatory practice in cognitive science. Critics also cite various empirical results as evidence against the idea that remembering can extend beyond skull and skin. We respond with a more principled, representative survey of the scientific psychology of memory, focussing in particular on robust recent empirical traditions for the study of collaborative recall and transactive social memory. We describe our own empirical research on socially distributed remembering, aimed at identifying conditions for mnemonic emergence in collaborative groups. Philosophical debates about extended, embedded, and distributed cognition can thus make richer, mutually beneficial contact with independently motivated research programs in the cognitive psychology of memory.40 page(s
    corecore