661 research outputs found

    Constraining the Λ\LambdaCDM and Galileon models with recent cosmological data

    Get PDF
    The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data. In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model. After updating our data sets, especially with the latest \textit{Planck} data and BAO measurements, we fitted the cosmological parameters of the Λ\LambdaCDM and Galileon models. The same analysis framework as in our previous papers was used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth rate. We showed that all tested Galileon models are as compatible with cosmological data as the Λ\LambdaCDM model. This means that present cosmological data are not accurate enough to distinguish clearly between both theories. Among the different Galileon models, we found that a conformal coupling is not favoured, contrary to the disformal coupling which is preferred at the 2.3σ2.3\sigma level over the uncoupled case. The tracker solution of the uncoupled Galileon model is also highly disfavoured due to large tensions with supernovae and \textit{Planck}+BAO data. However, outside of the tracker solution, the general uncoupled Galileon model, as well as the general disformally coupled Galileon model, remain the most promising Galileon scenarios to confront with future cosmological data. Finally, we also discuss constraints coming from Lunar Laser Ranging experiment and gravitational wave speed of propagation.Comment: 22 pages, 17 figures, published version in A&

    First experimental constraints on the disformally coupled Galileon model

    Get PDF
    The Galileon model is a modified gravity model that can explain the late-time accelerated expansion of the Universe. In a previous work, we derived experimental constraints on the Galileon model with no explicit coupling to matter and showed that this model agrees with the most recent cosmological data. In the context of braneworld constructions or massive gravity, the Galileon model exhibits a disformal coupling to matter, which we study in this paper. After comparing our constraints on the uncoupled model with recent studies, we extend the analysis framework to the disformally coupled Galileon model and derive the first experimental constraints on that coupling, using precise measurements of cosmological distances and the growth rate of cosmic structures. In the uncoupled case, with updated data, we still observe a low tension between the constraints set by growth data and those from distances. In the disformally coupled Galileon model, we obtain better agreement with data and favour a non-zero disformal coupling to matter at the 2.5σ2.5\sigma level. This gives an interesting hint of the possible braneworld origin of Galileon theory.Comment: 9 pages, 6 figures, updated versio

    La iconoclasia moderna.

    Get PDF

    A Bilevel Approach to Optimal Price-Setting of Time-and-Level-of-Use Tariffs

    Get PDF
    Time-and-Level-of-Use (TLOU) is a recently proposed pricing policy for energy, extending Time-of-Use with the addition of a capacity that users can book for a given time frame, reducing their expected energy cost if they respect this self-determined capacity limit. We introduce a variant of the TLOU defined in the literature, aligned with the supplier interest to prevent unplanned over-consumption. The optimal price-setting problem of TLOU is defined as a bilevel, bi-objective problem anticipating user choices in the supplier decision. An efficient resolution scheme is developed, based on the specific discrete structure of the lower-level user problem. Computational experiments using consumption distributions estimated from historical data illustrate the effectiveness of the proposed framework

    Impact of pre-treatment technologies on soil aquifer treatment

    Get PDF
    This study investigates the impact of pre-treatment options on the performances of soil columns simulating soil aquifer treatment (SAT). For this purpose a conventional activated sludge (CAS) process, a membrane bioreactor (MBR) and vertical flow reed beds were used as single units or in combination before SAT. The influent and effluent from each treatment train were monitored over three successive 6-month periods, corresponding to changes in the operational conditions of the MBR and CAS units from 6 days' sludge retention time (SRT) to 12 and 20 days. All the columns acted as efficient polishing steps for solids and bacteria. The column receiving effluent from the CAS system running at 6 days' SRT also presented high total nitrogen and total phosphorus removals, but this column was also associated with the lowest infiltration rates over that period. While the quality of the effluent from the column following the CAS process increased over 18 months of operation, the effluent quality of the columns receiving MBR effluent degraded. No correlations were found between variations in SRT of the MBR and CAS processes and the columns' performances. Overall, all columns, except the one receiving CAS effluent, underwent a reduction in infiltration rate over 18 months

    Effective Lagrangians for physical degrees of freedom in the Randall-Sundrum model

    Full text link
    We derive the second variation Lagrangian of the Randall-Sundrum model with two branes, study its gauge invariance and diagonalize it in the unitary gauge. We also show that the effective four-dimensional theory looks different on different branes and calculate the observable mass spectra and the couplings of the physical degrees of freedom of 5-dimensional gravity to matter.Comment: 22 pages, LaTeX, typos correcte

    Dy8SnS13.61O0.39 from single-crystal data

    Get PDF
    Crystals of the title dysprosium tin sulfide oxide, Dy8SnS13S1−xOx [x = 0.39 (4)], were obtained unintentionally from the Dy–Sn–S system. A statistical mixture of sulfur and oxygen was assumed for one position in the structure. S and O atoms surround each of the eight symmetrically non-equivalent dysprosium atoms. The Sn atoms are located in tetra­hedral surroundings of sulfur atoms. Trigonal prisms and tetra­hedra are connected to each other by their edges. All atoms are situated in mirror planes

    Adult reference levels in diagnostic and interventional radiology for temporary use in Switzerland

    Get PDF
    This work aims at establishing a set of diagnostic reference levels (DRLs) for various types of examinations performed in diagnostic and interventional radiology. The average doses for 257 types of radiological examinations were established during the 1998 nationwide survey on the exposure of the Swiss population by radiodiagnostics. They were calculated using appropriate dosimetric models and average technical parameters. The DRLs were derived from the average doses using a multiplying factor of 1.5. The DRLs obtained were rounded and compared to the data reported in the literature. The results are in most cases comparable to the DRLs determined by the 3rd-quartile method. These discrepancies registered in some cases, particularly for complex examinations, can be explained by significant differences in the protocols and/or the technical parameters used. A set of DRLs is proposed for a large number of examinations to be used in Switzerland as temporary values until a national dosimetric database is set u

    Study of Zγ events and limits on anomalous ZZγ and Zγγ couplings in pp̄ collisions at s=1.96TeV

    Get PDF
    We present a measurement of the Zγ production cross section and limits on anomalous ZZγ and Zγγ couplings for form-factor scales of Λ=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the eeγ (μμγ) final state using 320(290)pb-1 of pp̄ collisions at s=1.96TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h10,30Z|<0.23, |h20,40Z|<0.020, |h10,30γ|<0.23, and |h20,40γ|<0.019 for Λ=1000GeV. © 2005 The American Physical Society
    corecore