200 research outputs found

    Carney complex (CNC)

    Get PDF
    The Carney complex (CNC) is a dominantly inherited syndrome characterized by spotty skin pigmentation, endocrine overactivity and myxomas. Skin pigmentation anomalies include lentigines and blue naevi. The most common endocrine gland manifestations are acromegaly, thyroid and testicular tumors, and adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD, a rare cause of Cushing's syndrome, is due to primary bilateral adrenal defect that can be also observed in some patients without other CNC manifestations or familial history of the disease. Myxomas can be observed in the heart, skin and breast. Cardiac myxomas can develop in any cardiac chamber and may be multiple. One of the putative CNC genes located on 17q22-24, (PRKAR1A), has been identified to encode the regulatory subunit (R1A) of protein kinase A. Heterozygous inactivating mutations of PRKAR1A were reported initially in 45 to 65 % of CNC index cases, and may be present in about 80 % of the CNC families presenting mainly with Cushing's syndrome. PRKAR1A is a key component of the cAMP signaling pathway that has been implicated in endocrine tumorigenesis and could, at least partly, function as a tumor suppressor gene. Genetic analysis should be proposed to all CNC index cases. Patients with CNC or with a genetic predisposition to CNC should have regular screening for manifestations of the disease. Clinical work-up for all the manifestations of CNC should be performed at least once a year in all patients and should start in infancy. Cardiac myxomas require surgical removal. Treatment of the other manifestations of CNC should be discussed and may include follow-up, surgery, or medical treatment depending on the location of the tumor, its size, the existence of clinical signs of tumor mass or hormonal excess, and the suspicion of malignancy. Bilateral adrenalectomy is the most common treatment for Cushing's syndrome due to PPNAD

    Altérations de la voie de l'AMPc dans la tumorigénèse cortico-surrénalienne (étude des phosphodiestérases PDE11A et PDE8B)

    Get PDF
    La voie de l AMPc est une voie impliquée dans la physiopathologie de nombreuses tumeurs endocrines. Les phosphodiestérases sont des enzymes clés de la voie de l AMPc dans la mesure où elles permettent de réguler finement les niveaux intra-cellulaires d AMPc en hydrolysant l AMPc en son catabolite inactif, le 5 AMP. L hyperplasie macronodulaire bilatérale des surrénales est une étiologie rare de syndrome de Cushing ACTH-indépendant responsable d un syndrome de Cushing souvent modéré contrastant avec la taille des nodules surrénaliens. Sa physiopathologie est mal connue.Nous avons tout d abord pu montrer dans ce travail que les variants faux sens de la phosphodiestérase 11A pouvaient participer au développement des tumeurs corticosurrénales bilatérales sécrétrices de cortisol. Ces variants sont, en effet, non seulement retrouvés de façon plus fréquente chez les patients porteurs d une hyperplasie nodulaire comparés à des sujets contrôles, mais ils ont également des conséquences fonctionnelles in vitro.Nous avons, dans une seconde partie, montré grâce à une étude de transcriptome ayant porté sur un groupe d adénomes cortisoliques comparés à un groupe d adénomes non-sécrétant que plusieurs gènes codant pour la voie de l AMPc étaient impliqués dans la sécrétion cortisolique et que la phosphodiestérase 8 B semblait avoir un rôle prépondérant. Ces résultats ont ensuite été confirmés au niveau protéique.Pas de résumé en anglaisPARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    Silencing mutated β-catenin inhibits cell proliferation and stimulates apoptosis in the adrenocortical cancer cell line H295R

    Get PDF
    Adrenocortical carcinoma (ACC) is a rare and highly aggressive endocrine neoplasm, with limited therapeutic options. Activating β-catenin somatic mutations are found in ACC and have been associated with a poor clinical outcome. In fact, activation of the Wnt/β-catenin signaling pathway seems to play a major role in ACC aggressiveness, and might, thus, represent a promising therapeutic target. Similar to patient tumor specimen the H295 cell line derived from an ACC harbors a natural activating β-catenin mutation. We herein assess the in vitro and in vivo effect of β-catenin inactivation using a doxycyclin (dox) inducible shRNA plasmid in H295R adrenocortical cancer cells line (clone named shβ). Following dox treatment a profound reduction in β-catenin expression was detectable in shβ clones in comparison to control clones (Ctr). Accordingly, we observed a decrease in Wnt/βcatenin-dependent luciferase reporter activity as well as a decreased expression of AXIN2 representing an endogenous β-catenin target gene. Concomitantly, β-catenin silencing resulted in a decreased cell proliferation, cell cycle alterations with cell accumulation in the G1 phase and increased apoptosis in vitro. In vivo, on established tumor xenografts in athymic nude mice, 9 days of β-catenin silencing resulted in a significant reduction of CTNNB1 and AXIN2 expression. Moreover, continous β-catenin silencing, starting 3 days after tumor cell inoculation, was associated with a complete absence of tumor growth in the shβ group while tumors were present in all animals of the control group. In summary, these experiments provide evidences that Wnt/β-catenin pathway inhibition in ACC is a promising therapeutic target

    Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease.

    Get PDF
    The CABLES1 cell cycle regulator participates in the adrenal-pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing's disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene

    Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma

    Get PDF
    International audienceAdrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position − 1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing

    Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy.

    Get PDF
    International audienceThe aim of this study was to identify predictor sets of genes whose over- or underexpression in human sporadic adrenocortical tumors would help to identify malignant vs. benign tumors and to predict postsurgical metastatic recurrence. For this, we analyzed the expression of 230 candidate genes using cDNA microarrays in a series of 57 well-characterized human sporadic adrenocortical tumors (33 adenomas and 24 carcinomas). We identified two clusters of genes (the IGF-II cluster containing eight genes, including IGF-II, and the steroidogenesis cluster containing six genes encoding steroidogenic enzymes plus eight other genes) whose combined levels of expression appeared to be good predictors of malignancy. This predictive value was as strong as that of the pathological score of Weiss. The analysis of the population of carcinomas (13 tumors) for genes whose expression would be strongly different between recurring and nonrecurring tumors allowed identification of 14 genes meeting these criteria. Among these genes, there are probably new markers of tumor evolution that will deserve additional validation on a larger scale. Taken together, these results show that the parallel analysis of the expression levels of a selected group of genes on microgram quantities of tumor RNA (a quantity that can be obtained from fine needle aspirations) appears as a complementary method to histopathology for the diagnosis and prognosis of evolution of adrenocortical carcinomas

    Identification of glucocorticoid-related molecular signature by whole blood methylome analysis

    Full text link
    Objective Cushing's syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing's syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing's syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers. Design We evaluated whole blood DNA methylome in 94 samples obtained from patients with different glucocorticoid states (Cushing's syndrome, eucortisolism, adrenal insufficiency). We used an independent cohort of 91 samples for validation. Methods Leukocyte DNA was obtained from whole blood samples. Methylome was determined using the Illumina methylation chip array (~850 000 CpG sites). Both unsupervised (principal component analysis) and supervised (Limma) methods were used to explore methylome profiles. A Lasso-penalized regression was used to select optimal discriminating features. Results Whole blood methylation profile was able to discriminate samples by their glucocorticoid status: glucocorticoid excess was associated with DNA hypomethylation, recovering within months after Cushing's syndrome correction. In Cushing's syndrome, an enrichment in hypomethylated CpG sites was observed in the region of FKBP5 gene locus. A methylation predictor of glucocorticoid excess was built on a training cohort and validated on two independent cohorts. Potential CpG sites associated with the risk for specific complications, such as glucocorticoid-related hypertension or osteoporosis, were identified, needing now to be confirmed on independent cohorts. Conclusions Whole blood DNA methylome is dynamically impacted by glucocorticoids. This biomarker could contribute to better assessment of glucocorticoid action beyond hormone assays

    Supplementary data from: Steroid profiling using liquid chromatography mass spectrometry during adrenal vein sampling in patients with primary bilateral macronodular adrenocortical hyperplasia (PBMAH)

    Get PDF
    INTRODUCTION: Adrenal vein sampling (AVS) is not a routine procedure in patients with primary bilateral macronodular adrenocortical hyperplasia (PBMAH), but has been used to determine lateralization of cortisol secretion in order to guide decision of unilateral adrenalectomy. Our aim was to characterize the steroid fingerprints in AVS samples of patients with PBMAH and hypercortisolism and to identify a reference hormone for AVS interpretation. METHOD: Retrospectively, we included 17 patients with PBMAH from the German Cushing’s registry who underwent AVS. 15 steroids were quantified in AVS and peripheral blood samples using LC-MS/MS. We calculated lateralization indices and conversion ratios indicative of steroidogenic enzyme activity to elucidate differences between individual adrenal steroidomes and in steroidogenic pathways. RESULTS: Adrenal volume was negatively correlated with peripheral cortisone (r=0.62, p<0.05). 24-hour urinary free cortisol correlated positively with peripheral androgens (rDHEA=0.57, rDHEAS=0.82, rA=0.73, rT=0.54, p<0.05). DHEA was found to be a powerful reference hormone with high selectivity index, which did not correlate with serume cortisol and has a short half-life. All investigated steroids showed lateralization in single patients indicating the heterogenous steroid secretion pattern in patients with PBMAH. The ratios of corticosterone/aldosterone (catalyzed by CYP11B2), androstenedione/dehydroepiandrosterone (catalyzed by HSD3B2) and cortisone/cortisol (catalyzed by HSD11B2) in adrenal vein samples were higher in smaller adrenals (p<0.05). ARMC5 mutation carriers (n=6) showed lower androstenedione/17-hydroxyprogesterone and higher testosterone/androstenedione (p<0.05) ratios in peripheral blood, in line with lower peripheral androstenedione concentrations (p<0.05). CONCLUSION: Steroid profiling by LC-MS/MS led us to select DHEA as a candidate reference hormone for cortisol secretion. Lateralization and different steroid ratios showed that each steroid and all three steroidogenic pathways may be affected in PBMAH patients. In patients with germline ARMC5 mutations, the androgen pathway was particularly dysregulated
    • …
    corecore