557 research outputs found

    Air quality monitoring and modelling techniques for street canyons : the Paris experience

    Get PDF
    A better understanding of the dispersion and transformation of atmospheric pollutants in urban micro-environments is required to address the increasing public concern about human exposure in such areas. A joint research program has been established between INERIS (France) and University of Greenwich (UK) with the aim of developing efficient air quality monitoring and modelling methodologies to cover the needs of public health and road traffic managers in Europe. An intensive monitoring campaign was conducted at a representative canyon street in Paris in winter 1998. This experiment was designed to establish the spatial and temporal variation of pollution within the canyon, and test readily available dispersion models. Active and passive techniques were used to sample a wide range of traffic generated pollutants (VOC and inorganic gases) at different heights and distances from the kerb. Local meteorological and traffic information was also obtained. The observed CO and NO concentrations were compared with predicted values, calculated using AEOLIUS, the street canyon model developed by the UK Meteorological Office. The results demonstrate strong spatial pollution gradients within the canyon, large differences between roadside and background pollution levels, and pronounced temporal variability

    Maize production under combined conservation agriculture and integrated soil fertility management in the sub-humid and semi-arid regions of Kenya

    Get PDF
    Open Access Article; Published online: 23 May 2020Crop production in Sub-Saharan Africa (SSA) is constrained by rainfall variability and declining soil fertility. This has over time led to a decrease in crop yield, among them also maize. This decrease is also experienced in the sub-humid and semi-arid locations of Kenya. Among the commonly used soil and water management practices in SSA are Conservation Agriculture (CA) and integrated soil fertility management (ISFM). Crop response to these management practices is influenced by the existence of soil fertility gradients which are common among smallholder farmers. This paper presents results from a study done in the sub-humid and semi-arid location of Kenya, focusing on the effects of CA- and/or ISFM-based practices on maize yield. Trials were set out on farms within the two locations using a one farm one replicate randomized design. In each farm, CA-based treatment, no tillage with residue retention (NTR), ISFM-based treatment, conventional tillage with use of manure (CTM), a combination of CA + ISFM, no tillage with residue retention and use of manure (NTRM) and a control, (C) were laid down on fields representing high and low fertility soils. The trials started in the long rains of 2017 (LR2017) running for four seasons i.e., LR2017, short rains 2017 (SR2017), long rains 2018 (LR2018) and short rains 2018 (SR2018). Soil water content (SWC) and nitrogen use efficiency (NUE) were also monitored and evaluated. In either high or low fertility fields, maize grain yield was significantly different between the control and both NTR, CTM and NTRM with no significant differences between NTR, CTM and NTRM. Maize grain yield increase compared to the control was highest under ISFM in the low fertility fields in both locations and all seasons. For example, during the last season, SR2018, NTR, CTM and NTRM significantly increased maize grain yield by 136 %, 297 %, and 208 %, respectively, compared to the control, in the low fertility fields of sub-humid Kibugu. In the semi-arid Machang’a, the increase by NTR, CTM and NTRM, respectively, in the low fertility fields was 146 %, 379 % and 183 % for SR2018. This was linked to the tendency of ISFM to improve crop yield in the short run. For both locations, SWC and NUE were highest under NTR. In the sub-humid Kibugu, during SR2018, at the grain filling stage, 78 days after sowing, SWC under NTR, CTM and NTRM was higher by 16 %, 9 % and 20 %, respectively, compared to the control. Also at 78 days after sowing, in the semi-arid Machang’a, SWC was 18 %, 7 % and 15 % significantly higher under NTR, CTM and NTRM, respectively, compared to the control. The higher SWC observed under NTR and NTRM was related to no tillage with residue retention while under CTM it was related to improved soil organic matter through manure addition. NUE, on the other hand, was 26 % and 23 % in Kibugu and Machang’a, respectively, and lowest under the combined practice (NTRM), i.e., 19 % and 15 % in Kibugu and Machang’a, respectively. The high NUE under CA was attributed to the placement of urea in the planting holes while maintaining residue on the soil surface. The low NUE under NTRM was linked to fertilizer N immobilization. Lastly, from the biomass yield, our study showed that monocrop maize under NTR requires a kick-starting by an ISFM-based practice in the low fertility fields of the semi-arid region

    On the pion electroproduction amplitude

    Full text link
    We analyze amplitudes for the pion electroproduction on proton derived from Lagrangians based on the local chiral SU(2) x SU(2) symmetries. We show that such amplitudes do contain information on the nucleon axial form factor F_A in both soft and hard pion regimes. This result invalidates recent Haberzettl's claim that the pion electroproduction at threshold cannot be used to extract any information regarding F_A.Comment: 14 pages, 6 figures, revised version, accepted for publication in Phys. Rev.

    Physico-chemical soil attributes under conservation agriculture and integrated soil fertility management

    Get PDF
    Open Access Article; Published online: 25 Apr 2021Conservation Agriculture (CA) and Integrated Soil Fertility Management (ISFM) have been promoted in Sub Saharan Africa as a means to improve soil quality. A four season research (March, 2017 to March, 2019) was conducted to evaluate CA-based treatment, no tillage with residue retention (NTR), ISFM-based treatment, conventional tillage with use of manure (CTM), a combination of CA + ISFM, no tillage with residue retention and use of manure (NTRM) and a control, (C) on soil quality attributes. In the two locations (sub-humid and semi-arid) the effect of soil fertility gradients (high and low) were considered. Trials were set out using a one farm one replicate randomized design. In either high or low fertility fields, soil chemical and physical properties were significantly different between the control and NTR, CTM and NTRM with no significant differences between NTR, CTM and NTRM. SOC was higher under NTR and NTRM practices, which consequently had higher hydraulic conductivity, air permeability, mean weight diameter and available phosphorus. For all the treatments and in both locations, the low fertility fields had significantly lower agronomic use efficiency (AUE) compared to the high fertility fields. In both soil types, plant available water capacity and relative water capacity values were below the recommended thresholds indicating low soil water uptake, suboptimal microbial activity and consequently low nutrient uptake which explains the observed low AUE

    Oxygen impurities in NiAl: Relaxation effects

    Get PDF
    We have used a full-potential linear muffin-tin orbital method to calculate the effects of oxygen impurities on the electronic structure of NiAl. Using the supercell method with a 16-atom supercell we have investigated the cases where an oxygen atom is substitutionally placed at either a nickel or an aluminum site. Full relaxation of the atoms within the supercell was allowed. We found that oxygen prefers to occupy a nickel site over an aluminum site with a site selection energy of 138 mRy (21,370 K). An oxygen atom placed at an aluminum site is found to cause a substantial relaxation of its nickel neighbors away from it. In contrast, this steric repulsion is hardly present when the oxygen atom occupies the nickel site and is surrounded by aluminum neighbors. We comment on the possible relation of this effect to the pesting degradation phenomenon (essentially spontaneous disintegration in air) in nickel aluminides.Comment: To appear in Phys. Rev. B (Aug. 15, 2001

    Massless Minimally Coupled Fields in De Sitter Space: O(4)-Symmetric States Versus De Sitter Invariant Vacuum

    Get PDF
    The issue of de Sitter invariance for a massless minimally coupled scalar field is revisited. Formally, it is possible to construct a de Sitter invariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observer's space-time path grows linearly with the observer's proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy momentum tensor, both in the O(4) invariant states introduced by Allen and Follaci, and in the de Sitter invariant vacuum. We find that the vacuum energy density in the O(4) invariant case is larger than in the de Sitter invariant case.Comment: TUTP-92-1, to appear in Phys. Rev.

    Measuring Parton Densities in the Pomeron

    Get PDF
    We present a program to measure the parton densities in the pomeron using diffractive deep inelastic scattering and diffractive photoproduction, and to test the resulting parton densities by applying them to other processes such as the diffractive production of jets in hadron-hadron collisions. Since QCD factorization has been predicted NOT to apply to hard diffractive scattering, this program of fitting and using parton densities might be expected to fail. Its success or failure will provide useful information on the space-time structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended. Uncompressed postscript files available at ftp://ftp.phys.psu.edu/pub/preprint/psuth136

    Nuclear muon capture by 3He: meson exchange currents for the triton channel

    Get PDF
    Exchange current corrections are calculated using currents found from the hard-pion model and AV14+3BF wavefunctions. Results are given for the rate and spin observables. Their sensitivity to g_P, the nucleon pseudoscalar form factor, is reported.Comment: 35 pages, uuencoded gz-compressed tar file 42 Kbyte
    • …
    corecore