5,362 research outputs found

    Memory usage verification using Hip/Sleek.

    Get PDF
    Embedded systems often come with constrained memory footprints. It is therefore essential to ensure that software running on such platforms fulfils memory usage specifications at compile-time, to prevent memory-related software failure after deployment. Previous proposals on memory usage verification are not satisfactory as they usually can only handle restricted subsets of programs, especially when shared mutable data structures are involved. In this paper, we propose a simple but novel solution. We instrument programs with explicit memory operations so that memory usage verification can be done along with the verification of other properties, using an automated verification system Hip/Sleek developed recently by Chin et al.[10,19]. The instrumentation can be done automatically and is proven sound with respect to an underlying semantics. One immediate benefit is that we do not need to develop from scratch a specific system for memory usage verification. Another benefit is that we can verify more programs, especially those involving shared mutable data structures, which previous systems failed to handle, as evidenced by our experimental results

    Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment

    Full text link
    We have developed a senior undergraduate experiment that illustrates frequency stabilization techniques using radio-frequency electronics. The primary objective is to frequency stabilize a voltage controlled oscillator to a cavity resonance at 800 MHz using the Pound-Drever-Hall method. This technique is commonly applied to stabilize lasers at optical frequencies. By using only radio-frequency equipment it is possible to systematically study aspects of the technique more thoroughly, inexpensively, and free from eye hazards. Students also learn about modular radio-frequency electronics and basic feedback control loops. By varying the temperature of the resonator, students can determine the thermal expansion coefficients of copper, aluminum, and super invar.Comment: 9 pages, 10 figure

    Correlations of the elements of the neutrino mass matrix

    Full text link
    Assuming Majorana nature of neutrinos, we re-investigate, in the light of the recent measurement of the reactor mixing angle, the allowed ranges for the absolute values of the elements of the neutrino mass matrix in the basis where the charged-lepton mass matrix is diagonal. Apart from the derivation of upper and lower bounds on the values of the matrix elements, we also study their correlations. Moreover, we analyse the sensitivity of bounds and correlations to the global fit results of the neutrino oscillation parameters which are available in the literature.Comment: 37 pages, 146 figures, minor corrections, 17 additional figures, version for publication in JHE

    Effects of simulated removal activities on movements and space use of feral swine

    Get PDF
    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use.We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and postperiods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas

    Effects of simulated removal activities on movements and space use of feral swine

    Get PDF
    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use.We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and postperiods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas

    Foundational Verification of Stateful P4 Packet Processing

    Get PDF
    P4 is a standardized programming language for the network data plane. But P4 is not just for routing anymore. As programmable switches support stateful objects, P4 programs move beyond just stateless forwarders into new stateful applications: network telemetry (heavy hitters, DDoS detection, performance monitoring), middleboxes (firewalls, NAT, load balancers, intrusion detection), and distributed services (in-network caching, lock management, conflict detection). The complexity of stateful programs and their richer specifications are beyond what existing P4 program verifiers can handle. Verifiable P4 is a new interactive verification framework for P4 that (1) allows reasoning about multi-packet properties by specifying the per-packet relation between initial and final states; (2) performs modular verification, especially providing a modular description for stateful objects; (3) is foundational, i.e., with a machine-checked soundness proof with respect to a formal operational semantics of P4_{16} (the current specification of P4) in Coq. In addition, our framework includes a proved-correct reference interpreter. We demonstrate the framework with the specification and verification of a stateful firewall that uses a sliding-window Bloom filter on a Tofino switch to block (most) unsolicited traffic

    Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    Get PDF
    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of similar to 50 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings. DOI: 10.1103/PhysRevSTAB.16.02200

    Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions

    Get PDF
    North Australian tropical savanna accounts for 12% of the world\u27s total savanna land cover. Accordingly, understanding processes that govern carbon, water and energy exchange within this biome is critical to global carbon and water budgeting. Climate and disturbances drive ecosystem carbon dynamics. Savanna ecosystems of the coastal and sub-coastal of north Australia experience a unique combination of climatic extremes and are in a state of near constant disturbance from fire events (1 in 3 years), storms resulting in windthrow (1 in 5–10 years) and mega-cyclones (1 in 500–1000 years). Critically, these disturbances occur over large areas creating a spatial and temporal mosaic of carbon sources and sinks. We quantify the impact on gross primary productivity (GPP) and fire occurrence from a tropical mega-cyclone, tropical Cyclone Monica (TC Monica), which affected 10 400 km2 of savanna across north Australia, resulting in the mortality and severe structural damage to ~140 million trees. We estimate a net carbon equivalent emission of 43 Tg of CO2-e using the moderate resolution imaging spectroradiometer (MODIS) GPP (MOD17A2) to quantify spatial and temporal patterns pre- and post-TC Monica. GPP was suppressed for four years after the event, equivalent to a loss of GPP of 0.5 Tg C over this period. On-ground fuel loads were estimated to potentially release 51.2 Mt CO2-e, equivalent to ~10% of Australia\u27s accountable greenhouse gas emissions. We present a simple carbon balance to examine the relative importance of frequency versus impact for a number of key disturbance processes such as fire, termite consumption and intense but infrequent mega-cyclones. Our estimates suggested that fire and termite consumption had a larger impact on Net Biome Productivity than infrequent mega-cyclones. We demonstrate the importance of understanding how climate variability and disturbance impacts savanna dynamics in the context of the increasing interest in using savanna landscapes for enhanced carbon sinks in emission offset schemes
    corecore