283 research outputs found

    European marine omics biodiversity observation network: a strategic outline for the implementation of omics approaches in ocean observation

    Get PDF
    Marine ecosystems, ranging from coastal seas and wetlands to the open ocean, accommodate a wealth of biological diversity from small microorganisms to large mammals. This biodiversity and its associated ecosystem function occurs across complex spatial and temporal scales and is not yet fully understood. Given the wide range of external pressures on the marine environment, this knowledge is crucial for enabling effective conservation measures and defining the limits of sustainable use. The development and application of omics-based approaches to biodiversity research has helped overcome hurdles, such as allowing the previously hidden community of microbial life to be identified, thereby enabling a holistic view of an entire ecosystem’s biodiversity and functioning. The potential of omics-based approaches for marine ecosystems observation is enormous and their added value to ecosystem monitoring, management, and conservation is widely acknowledged. Despite these encouraging prospects, most omics-based studies are short-termed and typically cover only small spatial scales which therefore fail to include the full spatio-temporal complexity and dynamics of the system. To date, few attempts have been made to establish standardised, coordinated, broad scaled, and long-term omics observation networks. Here we outline the creation of an omics-based marine observation network at the European scale, the European Marine Omics Biodiversity Observation Network (EMO BON). We illustrate how linking multiple existing individual observation efforts increases the observational power in large-scale assessments of status and change in biodiversity in the oceans. Such large-scale observation efforts have the added value of cross-border cooperation, are characterised by shared costs through economies of scale, and produce structured, comparable data. The key components required to compile reference environmental datasets and how these should be linked are major challenges that we address.</jats:p

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Time trends in social contacts before and during the COVID-19 pandemic: the CONNECT study

    Get PDF
    Background Since the beginning of the COVID-19 pandemic, many countries, including Canada, have adopted unprecedented physical distancing measures such as closure of schools and non-essential businesses, and restrictions on gatherings and household visits. We described time trends in social contacts for the pre-pandemic and pandemic periods in Quebec, Canada. Methods CONNECT is a population-based study of social contacts conducted shortly before (2018/2019) and during the COVID-19 pandemic (April 2020 – February 2021), using the same methodology for both periods. We recruited participants by random digit dialing and collected data by self-administered web-based questionnaires. Questionnaires documented socio-demographic characteristics and social contacts for two assigned days. A contact was defined as a two-way conversation at a distance ≤ 2 m or as a physical contact, irrespective of masking. We used weighted generalized linear models with a Poisson distribution and robust variance (taking possible overdispersion into account) to compare the mean number of social contacts over time and by socio-demographic characteristics. Results A total of 1291 and 5516 Quebecers completed the study before and during the pandemic, respectively. Contacts significantly decreased from a mean of 8 contacts/day prior to the pandemic to 3 contacts/day during the spring 2020 lockdown. Contacts remained lower than the pre-COVID period thereafter (lowest = 3 contacts/day during the Christmas 2020/2021 holidays, highest = 5 in September 2020). Contacts at work, during leisure activities/in other locations, and at home with visitors showed the greatest decreases since the beginning of the pandemic. All sociodemographic subgroups showed significant decreases of contacts since the beginning of the pandemic. The mixing matrices illustrated the impact of public health measures (e.g. school closure, gathering restrictions) with fewer contacts between children/teenagers and fewer contacts outside of the three main diagonals of contacts between same-age partners/siblings and between children and their parents. Conclusion Physical distancing measures in Quebec significantly decreased social contacts, which most likely mitigated the spread of COVID-19

    Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore

    Get PDF
    Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity

    ESGAP inventory of target indicators assessing antibiotic prescriptions: A cross-sectional survey

    Get PDF
    Background A variety of indicators is commonly used to monitor antibiotic prescriptions as part of national antimicrobial stewardship (AMS) programmes. Objectives To make an inventory of indicators that assess antibiotic prescriptions and are linked to specific targets and incentives, at a national level. Methods A cross-sectional survey (three-item questionnaire) was conducted in 2017 among all ESGAP (ESCMID Study Group for Antimicrobial stewardshiP) members, coming from 23 European countries and 16 non-European countries. Results Almost all (20/23, 87%) European countries belonging to the ESGAP network participated, as well as one non-European country. Computerized systems routinely linking antibiotic prescriptions to clinical diagnoses were reported for only two countries (Turkey and Croatia). Only 6/21 (29%) countries had national indicators with both clear targets and incentives (Bulgaria, Croatia, France, the Netherlands, Norway and Portugal). We identified a total of 21 different indicators used in these countries, 16 concerning inpatients (9 quality indicators and 7 quantity metrics) and 8 concerning outpatients (all quantity metrics); some indicators were used in both settings. Three types of incentives were used: financing mechanism, hospitals' accreditation and public reporting. Some respondents reported that such indicators with both clear targets and incentives were used at a regional level in their country (e.g. Andalusia in Spain and England in the UK). Conclusions National indicators, with clear targets and incentives, are not commonly used in Europe and we observed wide variations between countries regarding the selected indicators, the units of measure and the chosen targets

    Rab27a and Rab27b control different steps of the exosome secretion pathway

    Get PDF
    Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo

    Identification of a Guanine Nucleotide Exchange Factor for Arf3, the Yeast Orthologue of Mammalian Arf6

    Get PDF
    Small G proteins of the Arf and Rab families are fundamental to the organisation and activity of intracellular membranes. One of the most well characterised of these G proteins is mammalian Arf6, a protein that participates in many cellular processes including endocytosis, actin remodelling and cell adhesion. Exchange of GDP for GTP on Arf6 is performed by a variety of guanine nucleotide exchange factors (GEFs), principally of the cytohesin (PSCD) and EFA6 (PSD) families. In this paper we describe the characterisation of a GEF for the yeast orthologue of Arf6, Arf3, which we have named Yel1 (yeast EFA6-like-1) using yeast genetics, fluorescence microscopy and in vitro nucleotide exchange assays. Yel1 appears structurally related to the EFA6 family of GEFs, having an N-terminal Sec7 domain and C-terminal PH and coiled-coil domains. We find that Yel1 is constitutively targeted to regions of polarised growth in yeast, where it co-localises with Arf3. Moreover the Sec7 domain of Yel1 is required for its membrane targeting and for that of Arf3. Finally we show that the isolated Yel1 Sec7 domain strongly stimulates nucleotide exchange activity specifically on Arf3 in vitro
    • …
    corecore