256 research outputs found

    Experimental Induction of Odontoblast Differentiation and Stimulation During Preparative Processes

    Get PDF
    In vivo implantation experiments have shown that ethylenediaminetetraaceticacid(EDTA)-soluble frac tions of dentin stimulate reparative dentinogenesis . When isolated embryonic dental papillae were cultured in the presence of these dentin constituents, odontoblast cytological and functional differentiation could be initiated and maintained in the absence of an enamel organ. These effects were attributed to the presence of TGF-/1- related molecules [TGF-/11 or bone morphogenetic protein -2a (BMP-2a)] which had to be used in combination with an EDT A-soluble fraction of dentin in order to specifically affect competent preodontoblasts . These EDT A-soluble constituents present in dentin could be replaced by heparin or fibronectin which both have been reported to interact with TGF-/1. The association of such defined matrix components with a TGF-/1-related molecule represents a biologically active complex triggering odontoblast functional differentiation. In response to caries, odontoblasts modulate their secretory activity and are stimulated to elaborate reactionary dentin. This might be induced by active molecules such as IGF, TGF-6 or BMP which are liberated from dentin consecutively to the demineralization process. Reparative dentinogenesis is distinct from reactionary dentinogenesis and more complex since it implicates the differentiation of precursor cells present in the dental papilla. The developmental history of these cells is different from that of the physiological predontoblasts in developing teeth. The nature of these stem cells and the mechanism of their induction still remain open questions

    Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria

    Get PDF
    The aim of the present study was the chemical characterization of some medically relevant essential oils (tea tree, clove, cinnamon bark, thyme and eucalyptus) and the investigation of antibacterial effect of the components of these oils by use of a direct bioautographic method. Thin layer chromatography (TLC) was combined with biological detection in this process. The chemical composition of the oils was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Eucalyptol (84.2%) was the main component of the essential oil of eucalyptus, eugenol (83.7%) of clove oil, and trans-cinnamic aldehyde (73.2%), thymol (49.9%) and terpinen-4-ol (45.8%) of cinnamon bark, thyme and tea tree oils, respectively. Antibacterial activity of the separated components of these oils, as well as their pure main components (eucalyptol, eugenol, trans-cinnamic aldehyde and thymol) was observed against the Gram-negative luminescence tagged plant pathogenic bacterium Pseudomonas syringae pv. maculicola (Psmlux) and the Gram-negative, naturally luminescent marine bacterium Vibrio fischeri. On the whole, the antibacterial activity of the essential oils could be related to their main components, but the minor constituents may be involved in this process. Trans-cinnamic aldehyde and eugenol were the most active compounds in TLC-bioautography. The sensitivity of TLC-bioautographic method can be improved with using luminescent test bacteria. This method is more cost-effective and provides more reliable results in comparison with conventional microbiological methods, e.g. disc-diffusion technique

    Catastrophizing mediates the relationship between the personal belief in a just world and pain outcomes among chronic pain support group attendees

    Get PDF
    Health-related research suggests the belief in a just world can act as a personal resource that protects against the adverse effects of pain and illness. However, currently, little is known about how this belief, particularly in relation to one’s own life, might influence pain. Consistent with the suggestions of previous research, the present study undertook a secondary data analysis to investigate pain catastrophizing as a mediator of the relationship between the personal just world belief and chronic pain outcomes in a sample of chronic pain support group attendees. Partially supporting the hypotheses, catastrophizing was negatively correlated with the personal just world belief and mediated the relationship between this belief and pain and disability, but not distress. Suggestions for future research and intervention development are made

    Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease

    Get PDF
    Several molecular subtypes of sporadic Creutzfeldt-Jakob disease have been identified and electroencephalogram and cerebrospinal fluid biomarkers have been reported to support clinical diagnosis but with variable utility according to subtype. In recent years, a series of publications have demonstrated a potentially important role for magnetic resonance imaging in the pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease. Magnetic resonance imaging signal alterations correlate with distinct sporadic Creutzfeldt-Jakob disease molecular subtypes and thus might contribute to the earlier identification of the whole spectrum of sporadic Creutzfeldt-Jakob disease cases. This multi-centre international study aimed to provide a rationale for the amendment of the clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Patients with sporadic Creutzfeldt-Jakob disease and fluid attenuated inversion recovery or diffusion-weight imaging were recruited from 12 countries. Patients referred as ‘suspected sporadic Creutzfeldt-Jakob disease' but with an alternative diagnosis after thorough follow up, were analysed as controls. All magnetic resonance imaging scans were assessed for signal changes according to a standard protocol encompassing seven cortical regions, basal ganglia, thalamus and cerebellum. Magnetic resonance imaging scans were evaluated in 436 sporadic Creutzfeldt-Jakob disease patients and 141 controls. The pattern of high signal intensity with the best sensitivity and specificity in the differential diagnosis of sporadic Creutzfeldt-Jakob disease was identified. The optimum diagnostic accuracy in the differential diagnosis of rapid progressive dementia was obtained when either at least two cortical regions (temporal, parietal or occipital) or both caudate nucleus and putamen displayed a high signal in fluid attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging. Based on our analyses, magnetic resonance imaging was positive in 83% of cases. In all definite cases, the amended criteria would cover the vast majority of suspected cases, being positive in 98%. Cerebral cortical signal increase and high signal in caudate nucleus and putamen on fluid attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging are useful in the diagnosis of sporadic Creutzfeldt-Jakob disease. We propose an amendment to the clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease to include findings from magnetic resonance imaging scan

    Enantioselective Dynamic Process Reduction of α- and β-Tetralone and Stereoinversion of Resulting Alcohols in a Selected Strain Culture

    Get PDF
    α-Tetralone and β-tetralone were subjected to biotransformation by 14 fungal strains. Enantiomeric purity of the products depended on the reaction time. 3-Day transformation of α-tetralone in Absidia cylindrospora culture gave S-(+)-1,2,3,4-tetrahydro-1-naftol of 92 % ee, whereas longer biotransformation time resulted in decrease of ee value. 3-Day transformation of β-tetralone by the same strain gave predominantly S-(−)-1,2,3,4-tetrahydro-2-naftol, whereas after 9 days of the reaction, the R-enantiomer with 85 % ee was isolated. Transformation of β-tetralone by Chaetomium sp. KCh 6651 gave pure (S)-(−)-1,2,3,4-tetrahydro-2-naftol in high yield at the concentration of 1 g/l. In this process, a non-selective carbonyl reduction was observed, followed by a selective oxidation of the R-alcohol

    Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease

    Get PDF
    Several molecular subtypes of sporadic Creutzfeldt–Jakob disease have been identified and electroencephalogram and cerebrospinal fluid biomarkers have been reported to support clinical diagnosis but with variable utility according to subtype. In recent years, a series of publications have demonstrated a potentially important role for magnetic resonance imaging in the pre-mortem diagnosis of sporadic Creutzfeldt–Jakob disease. Magnetic resonance imaging signal alterations correlate with distinct sporadic Creutzfeldt–Jakob disease molecular subtypes and thus might contribute to the earlier identification of the whole spectrum of sporadic Creutzfeldt–Jakob disease cases. This multi-centre international study aimed to provide a rationale for the amendment of the clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Patients with sporadic Creutzfeldt–Jakob disease and fluid attenuated inversion recovery or diffusion-weight imaging were recruited from 12 countries. Patients referred as ‘suspected sporadic Creutzfeldt–Jakob disease’ but with an alternative diagnosis after thorough follow up, were analysed as controls. All magnetic resonance imaging scans were assessed for signal changes according to a standard protocol encompassing seven cortical regions, basal ganglia, thalamus and cerebellum. Magnetic resonance imaging scans were evaluated in 436 sporadic Creutzfeldt–Jakob disease patients and 141 controls. The pattern of high signal intensity with the best sensitivity and specificity in the differential diagnosis of sporadic Creutzfeldt–Jakob disease was identified. The optimum diagnostic accuracy in the differential diagnosis of rapid progressive dementia was obtained when either at least two cortical regions (temporal, parietal or occipital) or both caudate nucleus and putamen displayed a high signal in fluid attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging. Based on our analyses, magnetic resonance imaging was positive in 83% of cases. In all definite cases, the amended criteria would cover the vast majority of suspected cases, being positive in 98%. Cerebral cortical signal increase and high signal in caudate nucleus and putamen on fluid attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging are useful in the diagnosis of sporadic Creutzfeldt–Jakob disease. We propose an amendment to the clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease to include findings from magnetic resonance imaging scans

    Commentary on Viewpoint: Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose?: Skeletal muscle wasting in hypoxia; a matter of altitude.

    Get PDF
    SKELETAL MUSCLE WASTING IN HYPOXIA; A MATTER OF ALTITUDE TO THE EDITOR: D’Hulst and Deldicque (1) argue that the severity of muscle atrophy incurred at high altitude is dependent on the combined effect of duration and degree of hypoxia exposure, or “hypoxic dose” (1). We do see a limitation of this concept, as it implies that someone residing in Leuven (altitude: 28 m) for 10 years would be subjected to a hypoxic dose of 2,454 km·h and incur 5% atrophy. Although the authors wrote that “it is unknown which parameter, altitude, or time spent at altitude is most decisive in the overall metric of hypoxic dose,” our illustration suggests that altitude is the prime determinant. This is further supported by the cut-off point at 4,000 m in a plot of the degree of atrophy vs. altitude (using the data in Table 1), whereas there was no clear relationship with duration of altitude residence. This cut-off point is likely related to the shape of the hemoglobin dissociation curve, where the oxygen tension at 4,000 m is such that physiologically significant arterial hemoglobin desaturation occurs (2). We acknowledge that one cannot entirely dismiss the importance of duration of hypoxic exposure, simply because skeletal muscle atrophy can only be noticed some time after net protein breakdown is initiated. However, muscle atrophy will not continue indefinitely, but will reach a new steady state (how otherwise can Tibetans still have muscle?). Finally, other adaptations than atrophy, such as an increase in hematocrit and capillarization, serve to attenuate muscle tissue hypoxia and atrophy (3) during residence at altitude. REFERENCES 1. D=Hulst G, Deldicque L. Viewpoint: Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol. doi:10.1152/ japplphysiol.00264.2016. 2. Wagner PD, Wagner HE, Groves BM, Cymerman A, Houston CS. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II. High Alt Med Biol 8: 32–42, 2007. doi:10.1089/ham.2006. 1049. 3. Wüst RCI, Jaspers RT, van Heijst AF, Hopman MT, Hoofd LJ, van der Laarse WJ, Degens H. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia. Am J Physiol Heart Circ Physiol 297: H364–H374, 2009. doi:10.1152/ajpheart.00272.2009

    Functional neurological disorder is a feminist issue

    Get PDF
    Functional neurological disorder (FND) is a common and disabling disorder, often misunderstood by clinicians. Although viewed sceptically by some, FND is a diagnosis that can be made accurately, based on positive clinical signs, with clinical features that have remained stable for over 100 years. Despite some progress in the last decade, people with FND continue to suffer subtle and overt forms of discrimination by clinicians, researchers and the public. There is abundant evidence that disorders perceived as primarily affecting women are neglected in healthcare and medical research, and the course of FND mirrors this neglect. We outline the reasons why FND is a feminist issue, incorporating historical and contemporary clinical, research and social perspectives. We call for parity for FND in medical education, research and clinical service development so that people affected by FND can receive the care they need

    NFATc1 Regulation of TRAIL Expression in Human Intestinal Cells

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL; Apo2) has been shown to promote intestinal cell differentiation. Nuclear factor of activated T cells (NFAT) participates in the regulation of a variety of cellular processes, including differentiation. Here, we examined the role of NFAT in the regulation of TRAIL in human intestinal cells. Treatment with a combination of phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Io) increased NFAT activation and TRAIL expression; pretreatment with the calcineurin inhibitor cyclosporine A (CsA), an antagonist of NFAT signaling, diminished NFAT activation and TRAIL induction. In addition, knockdown of NFATc1, NFATc2, NFATc3, and NFATc4 blocked PMA/Io increased TRAIL protein expression. Expression of NFATc1 activated TRAIL promoter activity and increased TRAIL mRNA and protein expression. Deletion of NFAT binding sites from the TRAIL promoter did not significantly abrogate NFATc1-increased TRAIL promoter activity, suggesting an indirect regulation of TRAIL expression by NFAT activation. Knockdown of NFATc1 increased Sp1 transcription factor binding to the TRAIL promoter and, importantly, inhibition of Sp1, by chemical inhibition or RNA interference, increased TRAIL expression. These studies identify a novel mechanism for TRAIL regulation by which activation of NFATc1 increases TRAIL expression through negative regulation of Sp1 binding to the TRAIL promoter
    corecore