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Several molecular subtypes of sporadic Creutzfeldt–Jakob disease have been identified and electroencephalogram and cere-

brospinal fluid biomarkers have been reported to support clinical diagnosis but with variable utility according to subtype.

In recent years, a series of publications have demonstrated a potentially important role for magnetic resonance imaging in

the pre-mortem diagnosis of sporadic Creutzfeldt–Jakob disease. Magnetic resonance imaging signal alterations correlate with

distinct sporadic Creutzfeldt–Jakob disease molecular subtypes and thus might contribute to the earlier identification of the

whole spectrum of sporadic Creutzfeldt–Jakob disease cases. This multi-centre international study aimed to provide a rationale

for the amendment of the clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Patients with sporadic Creutzfeldt–

Jakob disease and fluid attenuated inversion recovery or diffusion-weight imaging were recruited from 12 countries. Patients
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referred as ‘suspected sporadic Creutzfeldt–Jakob disease’ but with an alternative diagnosis after thorough follow up, were

analysed as controls. All magnetic resonance imaging scans were assessed for signal changes according to a standard protocol

encompassing seven cortical regions, basal ganglia, thalamus and cerebellum. Magnetic resonance imaging scans were eval-

uated in 436 sporadic Creutzfeldt–Jakob disease patients and 141 controls. The pattern of high signal intensity with the best

sensitivity and specificity in the differential diagnosis of sporadic Creutzfeldt–Jakob disease was identified. The optimum

diagnostic accuracy in the differential diagnosis of rapid progressive dementia was obtained when either at least two cortical

regions (temporal, parietal or occipital) or both caudate nucleus and putamen displayed a high signal in fluid attenuated

inversion recovery or diffusion-weight imaging magnetic resonance imaging. Based on our analyses, magnetic resonance

imaging was positive in 83% of cases. In all definite cases, the amended criteria would cover the vast majority of suspected

cases, being positive in 98%. Cerebral cortical signal increase and high signal in caudate nucleus and putamen on fluid

attenuated inversion recovery or diffusion-weight imaging magnetic resonance imaging are useful in the diagnosis of sporadic

Creutzfeldt–Jakob disease. We propose an amendment to the clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease

to include findings from magnetic resonance imaging scans.
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Abbreviations: CSF = cerebrospinal fluid; DWI = diffusion-weight imaging; EEG = electroencephalography; FLAIR = fluid attenuated
inversion recovery; IgG = immunglobulin G; MRI = magnetic resonance imaging; sCJD = sporadic Creutzfeldt–Jakob disease;
PRNP = prionprotein gene; PrPSc = pathogenic Prion protein; SREAT = steroid responsive encephalitis associated with autoimmune
thyroiditis

Introduction
Sporadic CJD (sCJD) is a transmissible neurodegenerative disorder

with a fatal outcome. Clinical diagnostic criteria for sCJD were first

formulated 30 years ago, using a combination of distinctive clinical

features and best available auxiliary paraclinical investigations,

which at that time was electroencephalography (EEG) (Masters

et al., 1979). In recent years, there has been progress in develop-

ing other specialist investigations, including useful surrogate

biomarkers in the cerebrospinal fluid (CSF), and clinical diagnostic

criteria have been amended (Zerr et al., 2000a; Collins et al.,

2006).

A series of recent publications has dealt with the clinical and

pathological phenotypes and heterogeneity in sCJD (Parchi et al.,

1999; Gambetti et al., 2003; Castellani et al., 2004; Collins et al.,

2006; Sanchez-Juan et al., 2006). It has become apparent that

a multimodal approach may be necessary if detection of the

entire phenotypic spectrum of sCJD is to be achieved (Zerr

et al., 2000b). Whereas some classical molecular subtypes such

as the MM1 subtype frequently display periodic sharp and slow

wave complexes in the EEG, the other five molecular subtypes are

negative with this investigation (Parchi et al., 1999; Castellani et al.,

2004; Collins et al., 2006). Utilizing CSF 14-3-3 protein detection

provides a higher sensitivity, including less typical subtypes of sCJD

such as VV1 and VV2 subtypes (Collins et al., 2006; Sanchez-Juan

et al., 2006; Geschwind et al., 2009). However, even for CSF 14-3-

3 protein detection with an overall sensitivity of 85%–95%,

biological variables modify the test results and cases with longer

duration or younger age at onset may be missed by this investiga-

tion (Castellani et al., 2004; Sanchez-Juan et al., 2006).

Acknowledging the limitations of the clinical criteria, the search

for additional sCJD diagnostic investigations has continued.

Magnetic resonance imaging (MRI) has become increasingly

important in the clinical diagnosis of sCJD. The use of sensitive

fluid attenuated inversion recovery (FLAIR) and diffusion-weight

imaging (DWI) sequences allows the detection of basal ganglia

hyperintensity and signal increase in other brain regions (Satoh

et al., 2007; Tschampa et al., 2007; Fujita et al., 2008;

Galanaud et al., 2008; Meissner et al., 2008). Characteristic MRI

lesion patterns corresponding to individual CJD subtypes have

been reported (Meissner et al., 2009). As MRI findings, even

from early in the illness, are proving valuable in the evaluation

of suspected sCJD patients, both by excluding other disorders

and by demonstrating features considered typical of human

prion disease (Geschwind et al., 2009), we undertook a systematic

multi-centre international collaborative study to analyse the value

of MRI lesion patterns in comparison to CSF biomarker 14-3-3 and

periodic sharp wave complexes in the EEG in terms of test sensi-

tivity and specificity.

Material and Methods

Patients
Cases were included from twelve countries (Argentina, Australia,

Belgium, Canada, France, Germany, Italy, Netherlands, Portugal,

Slovenia, Switzerland and United Kingdom) according to the following

criteria: (i) CJD diagnosis confirmed by brain pathology (definite

cases) or fulfilling accepted case definition criteria for ‘probable’ sCJD

(data used for a separate set of analyses); (ii) molecular subtype deter-

mined by codon 129 genotyping (MM, MV or VV) and western blot

analysis of brain pathogenic prion protein (PrPSc) type (1 or 2) (corre-

sponding to MM1, MM2, MV1, MV2, VV1 and VV2 subtype) (Parchi

et al., 1996, 1999); and (iii) available FLAIR or DWI MRI of the brain.

Controls
Controls were included according to the following criteria: (i) cases in

which the diagnosis of sCJD was suspected (patients classified at least as
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probable or possible CJD) but excluded on follow up by clinical investi-

gations (improvement or recovery, inflammatory CSF findings, other

diagnosis) or at autopsy; and (ii) available FLAIR or DWI brain MRI.

Codon 129 status was determined either as part of genotyping of

the entire prion protein gene (PRNP) open reading frame or by restric-

tion fragment length polymorphism analysis (Collins et al., 2006).

Genetic CJD (causal mutations found in prionprotein gene), iatrogenic

and variant CJD cases were excluded.

EEG (periodic sharp wave complexes) findings were also ascertained.

The CSF 14-3-3 immunoassays were performed using western blotting

as previously reported (Zerr et al., 2000a) and the conformity of test

methods and interpretation of results was confirmed by a blinded

sample exchange programme between laboratories (Sanchez-Juan

et al., 2006).

The study comprised 436 sCJD patients who died between April

1998 and March 2007, and 141 controls: 32 (5.5%) from

Argentina, 15 (2.6%) from Australia, 35 (6.1%) from Belgium,

9 (1.6%) from Canada, 16 (2.8%) from France, 328 (56.8%) from

Germany, 32 (5.5%) from Italy, 17 (2.9%) from Netherlands,

7 (1.2%) from Portugal, 4 (0.7%) from Slovenia, 7 (1.2%) from

Switzerland and 75 (13.0%) from UK.

MRI data
The magnetic resonance images were performed as routine clinical

diagnostic studies and were collected from various hospitals in the

framework of epidemiological studies as reported elsewhere

(Meissner et al., 2009).

The majority of the scans were available as hardcopy. If serial MRIs

were available, the first examination was used for the analysis. All

scans were assessed by at least one neuroradiologist (K.K., D.S.,

C.R., P.S. or D.C.) aware that sCJD was a differential diagnostic possi-

bility but blinded to the final diagnosis. All neuroradiologists assessed a

small MRI series for the estimation of the inter-observer agreement.

The intra reader concordance was high: 93.3%, �= 0.64 (P50.001).

Inter-rater concordance was 89%, �= 0.61 (P50.001) and 82%,

�= 0.62 (P50.001) (which is high agreement) or 75.4%, �= 0.50

(P50.001) and 76%, �= 0.45 (P50.001) (moderate agreement).

A standardized protocol was used which included seven cerebral

cortex regions (specifically the cingulate gyri, insular regions and

hippocampi, as well as the remaining frontal, parietal and temporal

lobes and the occipital lobes), basal ganglia (caudate nucleus, puta-

men, globus pallidus), thalamus (anterolateral nuclei, mediodorsal

nuclei, pulvinar) and cerebellar cortex. For the thalamus, the presence

or absence of a ‘pulvinar sign’ with extension into the antero-medial

thalamus underscoring the ‘hockey stick sign’ was also rated

(hyperintensity of the pulvinar relative to the anterior putamen)

(Collie et al., 2003). The cerebral regions were assessed as hyperin-

tense in relation to isointense cortex areas. As most MRI data were

available as hardcopy only, the grade of hyper-intensity was not

quantified. For each MRI examination, T2-weighted (T2-w) images

were evaluated first, followed by FLAIR and DWI. For further analyses,

only FLAIR and DWI were considered e.g. only the most sensitive

sequences, FLAIR and DWI (Kallenberg et al., 2006), were considered.

Proton-density-weighted scans and apparent diffusion coefficient maps

were less commonly used and not included in this study. Areas of

hyperintensity were scored separately for each sequence. The quality

of the complete MRI examination was graded from 1 to 6 (1 = excel-

lent, 2 = good, 3 = average, 4 = sufficient, 5 = insufficient, 6 = poor).

Scans graded higher than 4 were considered as non-diagnostic

(mainly due to motion artefacts) and excluded from the study.

Statistical analysis
Descriptive statistics were reported for sCJD and control patients;

�2-test and the non-parametric Mann–Whitney test were used to

assess differences between categorical and continuous variables.

The goal of our study was to identify the best combination of radi-

ological findings and MRI sequences to discriminate between sCJD and

non-sCJD patients. In order to do this we compared the results of

visual assessments of brain MRI scans in cases and controls. We con-

sidered a brain region as affected when a high signal was found in

either FLAIR or DWI MRI sequences. We calculated sensitivity

[the percentage of scans considered as characteristic (positive) of

sCJD in cases] and specificity [the percentage of scans considered as

not characteristic (negative) of sCJD in controls] for several criteria

patterns involving different combinations of affected regions and

MRI sequences. We also calculated diagnostic odds ratios—the ratio

of the odds of positivity in sCJD cases relative to the odds of positivity

in the controls—to assess which combinations of criteria patterns

yielded better test discriminatory performance; 95% confidence inter-

vals of the diagnostic odds ratios were estimated by the exact method.

Inter-reader agreement for brain MRI scan visual assessment

(normal or affected) was calculated, using Cohen’s � coefficient and

Concordance Index, for all explored areas included in the standardized

protocol. Concordance Index is the percentage of agreement between

readers and the � coefficient shows the difference in agreement, from

chance, between them; thus a �-value of 0 means no different from

chance and 1 is perfect agreement.

Ethics
The study was done in accordance with the current revision of the

Declaration of Helsinki and the Good Clinical Practice: Consolidated

Guideline approved by the International Conference on Harmonization

and applicable to national and local laws and regulations. For each

participating site, the study protocol and all amendments were

approved by an institutional review board or independent ethics

committee. All patients and their caregivers gave written informed

consent.

Results

Patients
In total, MRI scans were available for 436 patients with sCJD and

141 controls.

FLAIR sequences were available in 379 cases and in 128 controls,

DWI in 258 cases and 81 controls. Both sequences were available

in 201 cases and 68 controls. The median time from onset to

MRI was 2.7 months in sCJD cases and 6.7 months in controls.

Patient characteristics are summarized in Table 1.

Definition of the criteria
In the first part of the study, we analysed which FLAIR and/or

DWI MRI lesion pattern was characteristic for sCJD, regardless of

molecular subtype. To achieve this, a stepwise analysis was

performed: (i) selection of the cortical regions; (ii) combination

cortical/subcortical areas; and (iii) definition of the best MRI

sequence (FLAIR/DWI).
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Selection of cortical regions
In this part of the study, we analysed the frequency of high signal

detection in each cortical region for cases and controls and strati-

fied the data by the MRI technique used (FLAIR or DWI, Table 2).

As the result of this analysis, we selected three regions with the

optimum sensitivity and specificity data, irrespective of MRI tech-

nique used. The three areas with the highest values for diagnostic

accuracy were the parietal, occipital and temporal cortical regions.

The other cortical brain regions such as cingulate gyrus, insular

cortex or hippocampus were either non-discriminatory between

cases and controls, had low specificity and, in addition to this,

found low inter reader agreement, as reported before

(Krasnianski et al., 2008).

Combination of cortical and subcortical
areas
Various combinations of high signal intensity were analysed in

the three selected cortical (parietal, occipital and temporal) and

subcortical regions. The results are given in Table 3. For FLAIR

and DWI, the best results were obtained when two or more

regions (either temporal, parietal, occipital) displayed a high

signal in the MRI. The poorest specificity was obtained when

MRI scans were considered positive when only one or more cere-

bral cortical region showed a high signal; therefore, those patterns

were excluded for further analysis. For subcortical areas, the opti-

mum diagnostic accuracy was obtained when a high signal

increase was observed in both the caudate nucleus and putamen

simultaneously. DWI was generally more sensitive than FLAIR with

a similar specificity for both sequences.

Further analyses determined the best possible combination of

various cerebral cortical and subcortical high signal changes.

The highest diagnostic accuracy was obtained by accepting

either a combination of at least two cerebral cortical regions

(temporal, occipital, parietal) showing increased signal or both

the putamen and the caudate nucleus showing high signal inten-

sity (Table 4).

Definition of the MRI sequence
After choosing the combination of either at least two cerebral

cortical regions or both the putamen and caudate nucleus showing

high signal as the optimal radiological pattern, we analysed which

MRI pulse sequence or potential combination of sequences

revealed the highest sensitivity and specificity. Both sequences

achieved high diagnostic accuracy (Table 5). We calculated the

data for other potential combinations, such as FLAIR and DWI

positive, but the sensitivity achieved was only 54%.

In order to estimate the sensitivity and specificity of the combi-

nation FLAIR or DWI, we considered that patients with both pulse

sequences available were most reliable, because including patients

with only one sequence would result in a predominance of the

‘only FLAIR performed’ and a decrease in the sensitivity (Table 5),

since FLAIR is less sensitive than DWI.

False-positive findings in the MRI
According to our criteria, 19 controls had positive findings on the

MRI. Most of these suffered from an infectious or inflammatory

disorder of the central nervous system (n = 9), like lymphocytic

encephalitis, progressive multifocal leucencephalopathy, steroid

responsive encephalitis associated with autoimmune thyroiditis

(SREAT) or encephalitis of unknown origin. In other patients

with a positive MRI, autopsy confirmed Alzheimer’s disease

(n = 2), Dementia with Lewy bodies (n = 2), epilepsy (n = 2),

intravascular lymphomatosis and mitochondrial cytopathy.

Table 1 Patient characteristics

n Autopsy
(%)

Female
(gender)
(%)

Median age
(range)

Median duration
(range) (months)

Time to
MRI
(months)

Codon
129 MM
n (%)

Codon
129 MV
n (%)

Codon
129 VV
n (%)

FLAIR
MRI (n)

DWI
MRI (n)

sCJD 436 60.3 55.6 64.0 (35.3–85.0) 6.4 (1.0–56.3) 2.7 195 (62.7) 58 (18.6) 58 (18.6) 379 258

controls 144 39.1 48.8 65.9 (25.9–91.5) 12.0 (0.0–104.0) 6.7 11 (44.0) 8 (32.0) 6 (24.0) 128 81

P-value 0.27 0.2 0.007

Table 2 Selection of cortical areas

Frontal Cinguli Parietal Temporal Occipital Insula Hippocampus

CJD (% positive) FLAIR 48 52 37 32 17 24 20

Control (% negative) FLAIR 75 71 89 82 97 89 76

CJD (% positive) DWI 74 71 65 59 37 52 21

Control (% negative) DWI 65 61 89 81 90 77 88

Diagnostic odds
ratio (95% CI)

FLAIR 2.73
(1.52–3.94)

2.636
(1.51–3.76)

4.986
(2.03–7.94)

2.058
(1.04–3.07)

6.43
(0.2–13.06)

2.382
(0.98–3.78)

0.77
(0.4–1.15)

DWI 5.21
(2.44–7.98)

3.667
(1.76–5.57)

14.7
(3.85–25.56)

5.92
(2.37–9.46)

5.48
(1.25–9.71)

3.58
(1.55–5.62)

1.89
(0.5–3.28)

CI = confidence interval.
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Two patients recovered and the diagnosis is not known. No

distinctive MRI pattern could be detected for each disorder and

the frequency of high signal abnormalities in cortical and sub-

cortical areas was similar in all the diagnostic groups mentioned

above.

Modification of clinical criteria for
sCJD
Based on our results, we recommend modifying the current clinical

diagnostic criteria for sCJD to include the detection of either

Table 3 Selection of cortical and subcortical areas

FLAIR DWI

Controls Total
sCJD cases

Definite
CJD cases

Controls Total
sCJD cases

Definite
sCJD cases

At least one cortical regiona affected

No (%) 94 (73.4) 190 (50.1) 111 (48.1) 60 (74.1) 57 (22.1) 29 (19.1)

Yes (%) 34 (26.6) 189 (49.9) 120 (51.9) 21 (25.9) 201 (77.9) 123 (80.9)

Diagnostic odds ratio (95% CI) 2.8 (1.5–4.0) 3.0 (1.6–4.4) 10.1 (4.3–15.9) 12.1 (4.4–19.9)

At least two cortical regionsa affected

No (%) 121 (94.5) 278 (73.4) 173 (74.9) 72 (88.9) 115 (44.6) 62 (40.8)

Yes (%) 7 (5.5) 101 (26.6) 58 (25.1) 9 (11.1) 143 (55.4) 90 (59.2)

Diagnostic odds ratio (95% CI) 6.3 (1.3–11.3) 5.8 (1.1–10.5) 10.0 (2.6–17.3) 11.6 (2.7–20.5)

More than three cortical regions affected

No (%) 115 (89.8) 276 (72.8) 163 (70.6) 68 (84.0) 111 (43.0) 57 (37.5)

Yes (%) 13 (10.2) 103 (27.2) 68 (29.4) 13 (16.0) 147 (57.0) 95 (62.5)

Diagnostic odds ratio (95% CI) 3.3 (1.3–5.3) 3.7 (1.3–6.1) 6.9 (2.5–11.4) 8.7 (2.8–14.6)

Putamen or caudatum affected

No (%) 104 (81.3) 147 (38.8) 83 (35.9) 67 (82.7) 83 (32.2) 44 (28.9)

Yes (%) 24 (18.8) 232 (61.2) 148 (64.1) 14 (17.3) 175 (67.8) 108 (71.1)

Diagnostic odds ratio (95% CI) 6.8 (3.5–10.2) 7.7 (3.7–11.7) 10.1 (3.7–16.5) 11.8 (3.8–19.7)

Both putamen and caudatum affected

No (%) 120 (93.8) 223 (58.8) 135 (58.4) 76 (93.8) 133 (51.6) 76 (50.0)

Yes (%) 8 (6.3) 156 (41.2) 96 (41.6) 5 (6.2) 125 (48.4) 76 (50.0)

Diagnostic odds ratio (95% CI) 10.5 (2.7–18.3) 10.7 (2.5–18.8) 14.3 (0.9–27.7) 15.2 (0.6–29.8)

a Parietal–temporal–occipital; CI = confidence interval; s = sCJD cases.

Table 4 Selection of cortical and subcortical areas best combination

FLAIR DWI

Controls Total
sCJD cases

Definite
sCJD cases

Controls Total
sCJD cases

Definite
sCJD cases

More than three cortical regions OR both Put. and NC affected

No (%) 110 (85.9) 166 (43.8) 94 (40.7) 66 (81.5) 62 (24.0) 32 (21.1)

Yes (%) 18 (14.1) 213 (56.2) 137 (59.3) 15 (18.5) 196 (76.0) 120 (78.9)

Diagnostic odds ratio (95% CI) 7.8 (3.6–12.1) 8.9 (3.9–13.9) 13.9 (5.2-22.7) 16.5 (5.2-27.8)

More than three cortical regions OR Put. OR NC affected

No (%) 99 (77.3) 113 (29.8) 60 (26.0) 61 (75.3) 41 (15.9) 19 (12.5)

Yes (%) 29 (22.7) 266 (70.2) 171 (74.0) 20 (24.7) 217 (84.1) 133 (87.5)

Diagnostic odds ratio (95% CI) 8.0 (4.3–11.8) 9.7 (4.8–14.7) 16.1 (6.4–25.9) 21.4 (6.5–36.2)

At least two cortical regionsa affected OR both Put. and NC affected

No (%) 116 (90.6) 162 (42.7) 97 (42.0) 70 (86.4) 63 (24.4) 33 (21.7)

Yes (%) 12 (9.4) 217 (57.3) 134 (58.0) 11 (13.6) 195 (75.6) 119 (78.3)

Diagnostic odds ratio (95% CI) 13.0 (4.8–21.1) 13.4 (4.7–22.0) 19.7 (6.0–33.4) 23.0 (5.9–40.0)

At least two cortical regionsa affected OR Put. OR NC affected

No (%) 103 (80.5) 106 (28.0) 58 (25.1) 62 (76.5) 42 (16.3) 21 (13.8)

Yes (%) 25 (19.5) 273 (72.0) 173 (74.9) 19 (23.5) 216 (83.7) 131 (86.2)

Diagnostic odds ratio (95% CI) 10.6 (5.4–15.8) 12.3 (5.8–18.8) 16.8 (6.5–27.0) 20.4 (6.3–34.4)

NC = nucleus caudatum; Put. = putamen.
a Parietal–temporal–occipital.
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hyperintensity in the basal ganglia (both caudate nucleus and

putamen) or in at least two cortical regions (from either the

temporal, parietal or occipital cerebral cortices) (Fig. 1). This

implies that the detection of the specified high signal abnormalities

in FLAIR or DWI MRI will be considered at the same level of

diagnostic importance as periodic sharp wave complexes on the

EEG or 14-3-3 protein detection in the CSF.

Comparative analysis of the EEG,
CSF and MRI
In a subgroup of 214 definite CJD patients and 77 definite

non-cases, we analysed the frequency of true-positive results in

cases (sensitivity) and true-negative results in controls (specificity),

in relation to the detection of periodic sharp wave complexes in

the EEG, elevated CSF levels of 14-3-3 protein or MRI abnormal-

ities. Diagnostic MRI abnormalities for sCJD, as defined by our

analyses, were observed in 83% of such patients with a specificity

of 83%. For CSF 14-3-3 protein detection, test sensitivity was

86% but specificity was 68%. EEG had the lowest sensitivity

(44%) and highest specificity (92%). Details on comparative

analyses of current and amended criteria are given in Table 6.

The sensitivity of current criteria is 92%, the specificity 71%.

Thus, 8% of sCJD patients are not covered by the World Health

Figure 1 MRI-CJD Consortium criteria for sporadic Creutzfeldt–Jakob disease.

Table 5 Definition of MRI sequences for the pattern at
least two cortical regions affected (parietal–temporal–
occipital) or both putamen and nucleus caudatum affected

Controls Total
sCJD
cases

Definite
sCJD
cases

FLAIR AND DWI

No (%) 64 (94.1) 92 (45.8) 55 (45.8)

Yes (%) 4 (5.9) 109 (54.2) 65 (54.2)

Total (n) 68 201 120

Diagnostic odds
ratio (95%CI)

19.0 (0.9–38.8) 18.9 (1.4–39.2)

FLAIR OR DWI

No (%) 122 (86.5) 133 (30.5) 75 (28.5)

Yes (%) 19 (13.5) 303 (69.5) 188 (71.5)

Total (n) 141 436 263

Diagnostic odds
ratio (95%CI)

14.6 (7.0–22.3) 16.1 (7.2–25.0)

FLAIR OR DWIa

No (%) 56 (82.3) 38 (18.9) 21 (17.5)

Yes (%) 12 (17.6) 163 (81.1) 99 (82.5)

Total (n) 68 201 120

Diagnostic odds
ratio (95%CI)

20.0 (5.7–34.4) 22.0 (4.8–39.2)

a Only cases with both sequences available.
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Organization criteria. By inclusion of the MRI as an additional

parameter for ‘probable’ CJD, the sensitivity of clinical criteria

rises substantially to 98%, but specificity drops marginally.

Value of MRI in identification of
various molecular sCJD subtypes
A comparative analysis of protein 14-3-3, EEG and MRI in a

subset of CJD patients with data on pathogenic prion protein

type and codon 129 genotype available is shown in Table 7.

Currently used criteria improved the recognition of some of the

less typical sCJD subtypes such as VV2. Amended criteria, as

suggested here, are especially helpful for the rare and atypical

subtypes such as MM2, MV1 and MV2. The latter may develop

an atypical clinical syndrome and thus not be properly diagnosed

on clinical grounds (Krasnianski et al., 2006a, b)

Discussion
This multi-centre collaborative study analysed findings from MRI

scans in a large number of sCJD cases and controls; and has

provided evidence that justifies the inclusion of defined MRI

pattern in the clinical diagnostic criteria for sCJD. In a previous

manuscript, we reported characteristic MRI patterns for each

molecular CJD subtype (Meissner et al., 2009) and identified

variables which allowed for the best discrimination between

those subtypes. We chose the following radiological signs as

predictors of sCJD subtypes: high signal in (i) more than three

Table 6 Comparison of new and old criteria

n % Sensitivity Specificity

Current criteria

Definite sporadic CJD cases with both EEG and 14-3-3 tests performed

EEG atypical & 14-3-3 test negative 8 7.8

EEG typical & 14-3-3 test negative 7 6.8

EEG atypical & 14-3-3 test positive 49 47.6

EEG typical & 14-3-3 test positive 39 37.9 92.2

Total 103 100

Controls with both EEG and 14-3-3 tests performed

EEG atypical & 14-3-3 test negative 37 71.2 71.2

EEG typical & 14-3-3 test negative 1 1.9

EEG atypical & 14-3-3 test positive 12 23.1

EEG typical & 14-3-3 test positive 1 1.9

Total 52 100

New criteria

Definite sporadic CJD cases with all three tests performed (EEG, 14-3-3 tests, and MRI FLAIR and DWI, new criteria)

Current criteria negative & MRI negative 1 2.0

Current criteria positive & MRI negative 7 14

Current criteria negative & MRI positive 3 6

Current criteria positive & MRI positive 39 78 98

Total 50 100

Controls with all three tests performed (EEG, 14-3-3 tests, and MRI FLAIR and DWI)

Current criteria negative & MRI negative 17 70.8 70.8

Current criteria positive & MRI negative 5 20.8

Current criteria negative & MRI positive 1 4.2

Current criteria positive & MRI positive 1 4.2

Total 24 100

Table 7 Sensitivity of old and new criteria for each molecular disease subtype

Disease
subtype

Positive MRI/total
(%)

Positive 14-3-3/total
(%)

Positive EEG/total
(%)

New criteria positive
(%)

Old criteria
positive (%)

MM1 33/43 (76.7) 38/42 (90.5) 26/43 (60.5) 100 97.6

MM2 14/15 (93.3) 9/14 (64.3) 3/14 (21.4) 92.3 69.2

MV1 6/6 (100) 5/6 (83.3) 3/6 (50) 100 100

MV2 8/8 (100) 7/8 (87.5) 0/8 (0) 100 87.5

VV1 2/2 (100) 2/2 (100) 1/2 (50) 100 100

VV2 9/15(60) 14/15 (93.3) 0/15 (0) 100 93.3

All 72/89 (80.9) 75/87 (86.2) 33/88 (37.5) 98.8 91.9

MRI in sporadic CJD Brain 2009: 132; 2659–2668 | 2665



cerebral cortical regions; (ii) hippocampus; (iii) any basal ganglia;

(iv) any thalamic nuclei; and (v) cerebellum. Multivariate analysis,

including the five selected regions, was performed in order to

allow independent assessment of these parameters and a specific

MRI lesion pattern for each molecular disease subtype was identi-

fied (Meissner et al., 2009). Specificity of MRI changes was not

addressed. Since the information on specificity is essential for an

assessment of the true utility of MRI brain scan in the diagnosis of

sCJD, we performed the current study.

In order to assess the sensitivity of MRI in the diagnosis of sCJD,

we developed a set of variables which allowed the optimum dis-

crimination between CJD and controls. In this analysis, we selected

anatomical regions which have been demonstrated to be fre-

quently affected (Meissner et al., 2009). The characteristic MRI

lesion pattern, which allowed for the best discrimination between

sCJD cases and controls was found to be high signal intensity in

FLAIR or DWI in at least two cortical regions, or signal increase in

the caudate nucleus and putamen. Based on these findings, we

propose that the clinical diagnostic criteria for sCJD are amended

to include MRI signal abnormalities as defined above (Fig. 1). The

MRI findings will thus be equivalent to elevated levels of 14-3-3

proteins or periodic sharp and slow wave complexes in the EEG for

the clinical diagnosis of probable sCJD.

With respect to current clinical tests for sCJD, the EEG was the

first in vivo test to be used to support the clinical diagnosis of

sCJD. However, the EEG has been shown to be positive in only a

subset of sCJD patients, usually MM1 or MV1 cases. Typically,

periodic sharp wave complexes are detected late in the disease

and the median time to positive EGG is around 12 weeks. This

corresponds to the terminal stages of the illness (Poser et al.,

1999; Zerr et al., 2000a; Collins et al., 2006). A number of CSF

biomarkers have been reported in sCJD, including 14-3-3, tau,

S100b, neuron-specific enolase, phosphorylated tau and abeta,

with the majority of available data relating to 14-3-3 and tau

proteins (Sanchez-Juan et al., 2006). Both these biomarkers

support the clinical CJD diagnosis with a sensitivity of 92% and

specificity of 71% (Sanchez-Juan et al., 2006). However, a

number of publications have indicated that low levels of these

biomarkers are present in the CSF in some atypical CJD variants

(Castellani et al., 2004; Sanchez-Juan et al., 2006; Gmitterová

et al., 2008). Biological variables such as long disease duration,

young age at onset, type 2 pathogenic prion protein and hetero-

zygosity at codon 129 genotype of the PrP gene are all associated

with low biomarker levels (Parchi et al., 1999; Zerr et al., 2000b;

Castellani et al., 2004; Sanchez-Juan et al., 2006). This is in con-

trast with the results of MRI scans in some atypical and rare

variants of sCJD, such as VV1 and MV2: in VV1 patients there

is high signal in the cortical areas and normal signal in the basal

ganglia, while in MV2 patients characteristic abnormalities are

seen in the basal ganglia, putamen and thalamus (Meissner

et al., 2005; Krasnianski et al., 2006b, 2008). Characteristic

lesion patterns have recently been reported for patients with

other molecular disease subtypes (Meissner et al., 2009) and the

question was raised whether MRI brain scan might contribute to

the improved diagnosis across sCJD subtypes (Tschampa et al.,

2005; Meissner et al., 2009).

Table 7 shows the data on positive tests in a subgroup of

patients with known molecular type. MRI findings are positive in

81% of sCJD patients. Sensitivity of the 14-3-3 test is 86% and

significantly less for the EEG. By combination of all parameters,

sensitivity is 98% and specificity of the criteria is 71%. Although

the frequency and location of high signal intensities vary between

subtypes, by amendment of clinical criteria, most molecular

disease subtypes will be covered, including rare subtypes VV1

and MV2 (Table 7).

Our results indicate a high rate of agreement between identifi-

cation of cortical parietal, temporal and occipital signal and basal

ganglia involvement between five raters, even in a cohort of

patients where MRI scans were acquired at different centres,

with some modifications. These results suggest that MRI is a

robust investigation in sCJD and qualifies as a potential biomarker

for CJD.

A limitation of this study is the high number of sCJD cases as

compared to controls. However, the gold standard for the valida-

tion of the clinical diagnostic criteria was the analysis of the subset

of sCJD cases in which the diagnosis had been confirmed by

neuropathology. In controls, only data from patients in which

the diagnosis of CJD had been definitely excluded by neuropathol-

ogy or in which there was a definite alternative clinical diagnosis,

were used. This group included cases who recovered, cases with

inflammatory CSF findings indicating an alternative diagnosis or a

clinical course which excluded CJD as a diagnosis (Heinemann

et al., 2007). In the context of a multi-centre MRI study on a

rare disorder, achieving a high autopsy rate in non-cases is difficult

and it would take many years to obtain a representative autopsy

sample of non-cases at a similar rate to the sCJD cases.

Epidemiological surveillance studies on rare disorders are person

and cost intensive and a study with selected MRI scans on more

than 300 cases and controls on a solely autoptic sample is unlikely

to be feasible in the near future. However, in this study, we have

achieved neuropathology confirmation in 40% of controls and in

60% of CJD patients.

Our analysis has shown that MRI findings may lead to false

positive diagnosis in a small number of cases. This is an important

issue for the accurate diagnosis of sCJD. Almost 50% of false-

positive findings on the MRI were associated with inflammatory

conditions; the other diagnoses were Alzheimer’s disease and

Dementia with Lewy bodies (HaÏk et al., 2000; Tschampa et al.,

2001). Inflammatory conditions of the brain represent the most

important differential diagnosis as there may be a possibility for

treatment (Chang et al., 2007; Heinemann et al., 2007;

Geschwind et al., 2008). In our patients, diagnoses included

encephalitis of unknown origin and SREAT (Seipelt et al., 1999).

The latter diagnosis has been described previously as an important

treatable condition in the differential diagnosis of CJD. The crucial

question for the clinician is how to avoid the misinterpretation of

tests and how to avoid missing a treatable condition in a patient

with a rapid progressive dementia and focal neurological signs

(Josephs et al., 2009). Thorough analysis of the cerebrospinal

fluid for routine parameters such as cell count, protein and oligo-

clonal bands (which are often positive in SREAT and other inflam-

matory conditions, but usually negative in CJD) may be helpful in

diagnosis (Jacobi et al., 2005; Green et al., 2007). As other tests,
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such as 14-3-3 and EEG, may also show ‘false-positive’ results in

inflammatory conditions of the brain, accurate clinical diagnosis

can be a major challenge. Thus, patients with ‘inflammatory’

abnormalities in the CSF such as pleocytosis, high elevated protein

content and oligoclonal immunglobulin G should enter the

diagnostic pathway for potentially treatable conditions (Vernino

et al., 2007).

The time point at which the clinical diagnosis of sCJD is made

may be very important if treatment strategies become available as

any therapy will probably need to be started early if it is to be

effective. The EEG has been shown to become positive usually

only in the late stages of the disease. CSF biomarkers can

become positive in the early disease stages, as shown in a

cohort of patients with repeated lumbar punctures and multiple

CSF tests (Sanchez-Juan et al., 2007). With MRI the question on

when the typical changes appear is still unresolved because of the

limited number of patients with multiple scans. However, there is

a suggestion from the literature that MRI may become positive

early in the disease (Young et al., 2005; Fujita et al., 2008;

Galanaud et al., 2008; Hoshino et al., 2008). Further work will

be needed to address this question.

In summary, our data show that basal ganglia and cortical

hyperintensities represent the most frequent MRI findings in

sCJD and are present in most cases. Characteristic brain MRI

lesion patterns are helpful in establishing a diagnosis of sCJD

and may help to identify atypical sporadic disease forms. This is

the most comprehensive study on MRI findings in sCJD to date,

and in combination with previous studies, provides firm evidence

that brain MRI has a high sensitivity and specificity in the diag-

nosis of the disease.
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