143 research outputs found

    Superposed sedimentary and tectonic block-in-matrix fabrics in a subducted serpentinite m\ue9lange (High-pressure zermatt saas ophiolite, western alps)

    Get PDF
    The primary stratigraphic fabric of a chaotic rock unit in the Zermatt Saas ophiolite of the Western Alps was reworked by a polyphase Alpine tectonic deformation. Multiscalar structural criteria demonstrate that this unit was deformed by two ductile subduction-related phases followed by brittle-ductile then brittle deformation. Deformation partitioning operated at various scales, leaving relatively unstrained rock domains preserving internal texture, organization, and composition. During subduction, ductile deformation involved stretching, boudinage, and simultaneous folding of the primary stratigraphic succession. This deformation is particularly well-documented in alternating layers showing contrasting deformation style, such as carbonate-rich rocks and turbiditic serpentinite metasandstones. During collision and exhumation, deformation enhanced the boudinaged horizons and blocks, giving rise to spherical to lozenge-shaped blocks embedded in a carbonate-rich matrix. Structural criteria allow the recognition of two main domains within the chaotic rock unit, one attributable to original broken formations reflecting turbiditic sedimentation, the other ascribable to an original sedimentary m\ue9lange. The envisaged geodynamic setting for the formation of the protoliths is the Jurassic Ligurian-Piedmont ocean basin floored by mostly serpentinized peridotites, intensely tectonized by extensional faults that triggered mass transport processes and turbiditic sedimentation

    Carbonate-Templated Self-Assembly of an Alkylthiolate-Bridged Cadmium Macrocycle

    Get PDF
    In the presence of Cd(ClO4)2 and a base, a new mixed N,S-donor alkylthiolate ligand supported both carbonate formation from atmospheric CO2 and the self-assembly of a novel bicapped puckered (CdS)6 molecular wheel. The remarkable stability of the complex was demonstrated by slow intermolecular ligand exchange on the 2J(HH) and J(111/113Cd1H) time scales at elevated temperature. Both CO2 and the base were required to convert amorphous “CdLClO4” precipitated in the absence of air to the carbonate complex. The complex shares structural features with the ζ-carbonic anhydrase class associating cadmium(II) with the biogeochemical cycling of carbon and is the first structurally characterized carbonate complex of any metal involving an alkylthiolate ligand

    Current quality of life and its determinants among opiate-dependent individuals five years after starting methadone treatment

    Get PDF
    This study explores the current QoL of opiate-dependent individuals who started outpatient methadone treatment at least 5 years ago and assesses the influence of demographic, psychosocial, drug and health-related variables on individuals' QoL. Participants (n = 159) were interviewed about their current QoL, psychological distress and severity of drug-related problems, using the Lancashire Quality of Life Profile, the Brief Symptom Inventory and the Addiction Severity Index. Potential determinants of QoL were assessed in a multiple linear regression analysis. Five years after the start of methadone treatment, opiate-dependent individuals report low QoL scores on various domains. No association was found between drug-related variables and QoL, but a significant negative impact of psychological distress was identified. Severity of psychological distress, taking medication for psychological problems and the inability to change one's living situation were associated with lower QoL. Having at least one good friend and a structured daily activity had a significant, positive impact on QoL. Opiate-dependent individuals' QoL is mainly determined by their psychological well-being and a number of psychosocial variables. These findings highlight the importance of a holistic approach to treatment and support in methadone maintenance treatment, which goes beyond fixing the negative physical consequences of opiate dependence

    Fractionation of Trace Elements by Subduction-Zone Metamorphism — Effect of Convergent-Margin Thermal Evolution

    No full text
    Differential chemical/isotopic alteration during forearc devolatilization can strongly influence the cycling of volatile components, including some trace elements, in subduction zones. The nature and magnitude of this devolatilization effect are likely to be strongly dependent on the thermal structure of individual convergent margins. A recent model for metamorphism of the Catalina Schist, involving progressive underplating (at ≤45 km depths) of rock packets metamorphosed along successively lower-T prograde P-T paths in a rapidly cooling, newly initiated subduction zone, affords a unique evaluation of the effects of varying prograde P-T paths on the magnitudes of devolatilization and chemical/isotopic alteration of subducting rocks. In the Catalina Schist, the most extensive devolatilization occurred in metasedimentary rocks which experienced prograde P-T paths encountering the epidote-blueschist facies (\u3e350°C at 9 to 12 kbar) or higher-T conditions; such rocks are depleted in ‘fluid-mobile’ elements such as N, B, Cs, As, and Sb relative to protoliths. Removal of these elements resulted in changes in B/(Be, Li, La, Zr), Cs/Th, Rb/Cs, As/Ce, Sb/Ce, and Creduced/N, and increases in δ15N and δ13C. The relative susceptibilities of the “fluid-mobile” elements to loss along increasingly higher-T P-T paths can be categorized. Boron and Cs show the greatest susceptibility to low-T removal by fluids, showing \u3e50% depletion in even lawsonite-blueschist-facies metasedimentary rocks which experienced relatively low-T prograde metamorphic paths. In rocks which experienced higher-T paths, As and Sb (likely in sulfides) show the greatest depletions (\u3e90%); N, Cs, and B (largely in micas) occur at ∼25% of protolith contents in even partially melted amphibolite-facies rocks. Variations in B/Be, Cs/Th, As/Ce, and Sb/Ce among arcs from differing convergent-margin thermal regimes, and conceivably some cross-arc declines in these ratios, are compatible with evidence from the Catalina Schist for varying degrees of element removal as a function of prograde thermal history. In relatively cool subduction zones (e.g., Kuriles, Marianas, Aleutians, southern Alaska) with thermal regimes similar to that which formed the low-grade units of the Catalina Schist (and blueschist-facies rocks in the Franciscan Complex), forearc devolatilization is less profound, B, Cs, As, Sb, and N are more likely to be deeply subducted, and enriched in arc lavas, and significant devolatilization occurs at the blueschist-to-eclogite transition. High-grade units could reflect thermal evolution analogous to that of relatively warm subduction zones (e.g., Cascadia) and back-arcs in which arc lavas are depleted in B, Cs, As, and Sb due to prior removal by forearc devolatilization. The results of this study also imply less efficient recycling of these elements during the warmer Archean subduction which resulted in greater slab melting and production of abundant trondhjemite-tonalite magmatic suites

    Fractionation of trace elements by subduction-zone metamorphism – effect of convergent-margin thermal evolution. Earth Planet

    No full text
    Abstract Differential chemical=isotopic alteration during forearc devolatilization can strongly influence the cycling of volatile components, including some trace elements, in subduction zones. The nature and magnitude of this devolatilization effect are likely to be strongly dependent on the thermal structure of individual convergent margins. A recent model for metamorphism of the Catalina Schist, involving progressive underplating (at Ä45 km depths) of rock packets metamorphosed along successively lower-T prograde P -T paths in a rapidly cooling, newly initiated subduction zone, affords a unique evaluation of the effects of varying prograde P -T paths on the magnitudes of devolatilization and chemical=isotopic alteration of subducting rocks. In the Catalina Schist, the most extensive devolatilization occurred in metasedimentary rocks which experienced prograde P -T paths encountering the epidote-blueschist facies (>350ºC at 9 to 12 kbar) or higher-T conditions; such rocks are depleted in 'fluid-mobile' elements such as N, B, Cs, As, and Sb relative to protoliths. Removal of these elements resulted in changes in B=(Be, Li, La, Zr), Cs=Th, Rb=Cs, As=Ce, Sb=Ce, and C reduced =N, and increases in δ 15 N and δ 13 C. The relative susceptibilities of the 'fluid-mobile' elements to loss along increasingly higher-T P-T paths can be categorized. Boron and Cs show the greatest susceptibility to low-T removal by fluids, showing >50% depletion in even lawsonite-blueschist-facies metasedimentary rocks which experienced relatively low-T prograde metamorphic paths. In rocks which experienced higher-T paths, As and Sb (likely in sulfides) show the greatest depletions (>90%); N, Cs, and B (largely in micas) occur at ¾25% of protolith contents in even partially melted amphibolite-facies rocks. Variations in B=Be, Cs=Th, As=Ce, and Sb=Ce among arcs from differing convergent-margin thermal regimes, and conceivably some cross-arc declines in these ratios, are compatible with evidence from the Catalina Schist for varying degrees of element removal as a function of prograde thermal history. In relatively cool subduction zones (e.g., Kuriles, Marianas, Aleutians, southern Alaska) with thermal regimes similar to that which formed the low-grade units of the Catalina Schist (and blueschist-facies rocks in the Franciscan Complex), forearc devolatilization is less profound, B, Cs, As, Sb, and N are more likely to be deeply subducted, and enriched in arc lavas, and significant devolatilization occurs at the blueschist-to-eclogite transition. High-grade units could reflect thermal evolution analogous to that of relatively warm subduction zones (e.g., Cascadia) and back-arcs in which arc lavas are depleted in B, Cs, As, and Sb due to prior removal by forearc devolatilization. The results of this study also imply less efficient recycling of these elements during Ł Corresponding author. Tel.: C1-610-758-5831; Fax: C1-610-758-3677; E-mail: [email protected] 0012-821X/99/$ -see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S 0 0 1 2 -8 2 1 X ( 9 9 ) 0 0 1 3 5 -1 64 G.E. Bebout et al. / Earth and Planetary Science Letters 171 (1999

    Into the deep and beyond: Carbon and nitrogen subduction recycling in secondary peridotites

    Get PDF
    Understanding the volatile cycles at convergent margins is fundamental to unravel the Earth's evolution from primordial time to present. The assessment of fluid-mobile and incompatible element uptake in serpentinites via interaction with seawater and subduction-zone fluids is central to evaluate the global cycling of the above elements in the Earth's mantle. Here, we focus on the carbon (C), nitrogen (N) and C isotope compositions of chlorite harzburgites and garnet peridotites deriving from subduction-zone dehydration of former oceanic dehydration of serpentinite \u2013 i.e., metaperidotites (Cima di Gagnone, Swiss Central Alps) with the aim of evaluating the contribution of these rocks to the global C-N cycling. These ultramafic rocks, enclosed as lenses in a metasedimentary m\ue9lange, represent the destabilization of antigorite and chlorite at high-pressure/temperature (P/T) along a slab-mantle interface. Chlorite- and garnet-bearing rocks have similar ranges in C concentration ([C] = 210 \u2013 2465 ppm and 304 \u2013 659 ppm, respectively), with one magnesite-bearing chlorite harzburgite hosting 11000 ppm C. The average N concentrations ([N]) of the garnet peridotites (54 \ub1 15 ppm, one standard deviation indicated) are higher than those of the chlorite harzburgites (29 \ub1 6 ppm). The \u3b413C of total C (TC) and total organic C (TOC) values of the Gagnone metaperidotites range from -12.2 to -17.8\u2030 and from -27.8 to -26.8\u2030, respectively, excluding the magnesite-bearing chlorite harzburgites with higher values of -7.2\u2030 (TC) and -21.2\u2030 (TOC). The [C] of these rocks are comparable to those of serpentinites form modern and ancient oceanic environments and with [C] of high-P serpentinites. However, the lack of preserved serpentinite precursors makes it difficult to determine whether release of H2O during high-P breakdown of antigorite and chlorite is coupled with significant C release to fluids. The \u3b413C values appear to reflect mixing between seawater-derived carbonate and a reduced C source and a contribution from the host metasedimentary rocks ([C] = 301 ppm; [N] = 33 ppm; TC \u3b413C = -24.4\u2030; TOC \u3b413C = -27.0\u2030) cannot be completely excluded. The C-O isotope composition of the carbonate in magnesite-bearing chlorite harzburgites is compatible with progressive devolatilization at oxidized conditions, whereas the signatures of the majority of the other Gagnone samples appear to reflect different degree of interaction with sedimentary fluids. The [N] of the Gagnone metaperidotites are higher than those of oceanic and subducted serpentinites and show a range similar to that of high-P antigorite-serpentinites from mantle wedges. This enrichment is compatible with fluid-mediated chemical exchange with the surrounding metasedimentary rocks leading to strong modification of the Gagnone metaperidotites' geochemistry during prograde subduction along the slab-mantle interface. Comparing the \u3b413C data reported in this study with published \u3b413C values for diamonds, we suggest that the volatile recycling via Gagnone-like metaperidotites in subduction zones could contribute to deep-Earth diamond genesis and in particular to the formation of blue boron (B)-bearing diamonds. Our results highlight that the subduction of secondary peridotites evolved along the slab-mantle interface is a viable mechanism to inject volatiles into the deep mantle, particularly in hotter geothermal regimes such as the ones active during the early Earth's history
    corecore