17 research outputs found
Optimising the glaucoma signal/noise ratio by mapping changes in spatial summation with area-modulated perimetric stimuli
Identification of glaucomatous damage and progression by perimetry are limited by measurement and response variability. This study tested the hypothesis that the glaucoma damage signal/noise ratio is greater with stimuli varying in area, either solely, or simultaneously with contrast, than with conventional stimuli varying in contrast only (Goldmann III, GIII). Thirty glaucoma patients and 20 age-similar healthy controls were tested with the Method of Constant Stimuli (MOCS). One stimulus modulated in area (A), one modulated in contrast within Ricco's area (C R ), one modulated in both area and contrast simultaneously (AC), and the reference stimulus was a GIII, modulating in contrast. Stimuli were presented on a common platform with a common scale (energy). A three-stage protocol minimised artefactual MOCS slope bias that can occur due to differences in psychometric function sampling between conditions. Threshold difference from age-matched normal (total deviation), response variability, and signal/noise ratio were compared between stimuli. Total deviation was greater with, and response variability less dependent on defect depth with A, AC, and C R stimuli, compared with GIII. Both A and AC stimuli showed a significantly greater signal/noise ratio than the GIII, indicating that area-modulated stimuli offer benefits over the GIII for identifying early glaucoma and measuring progression
Differential effects of aging on spatial contrast sensitivity to linear and polar sine-wave gratings
Recommended from our members
No evidence for loss of short-wavelength sensitive cone photoreceptors in normal ageing of the primate retina
In old world primates including humans, cone photoreceptors are classified according to their maximal sensitivity at either short (S, blue), middle (M, green) or long (L, red) wavelengths. Colour discrimination studies show that the S-cone pathway is selectively affected by age and disease, and psychophysical models implicate their loss. Photoreceptors have high metabolic demand and are susceptible to age or disease-related losses in oxygen and nutrient supply. Hence 30% of rods are lost over life. While comparable losses are not seen in cones, S-cones comprise less than 10% of the cone population, so significant loss would be undetected in total counts. Here we examine young and aged primate retinae stained to distinguish S from M/L-cones. We show there is no age-related cone loss in either cone type and that S-cones are as regularly distributed in old as young primates. We propose that S-cone metabolism is less flexible than in their M/L counterparts, making them more susceptible to deficits in normal cellular function. Hypoxia is a feature of the ageing retina as extracellular debris accumulates between photoreceptors and their blood supply which likely impacts S-cone function. However, that these cells remain in the ageing retina suggests the potential for functional restoration
NICE : A Computational solution to close the gap from colour perception to colour categorization
The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms
Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density.
Foveal and parafoveal increment thresholds were measured for 50 observers (12-88 years of age) under conditions that isolated retinal mechanisms dominated by short- (S-), middle- (M-), or long- (L-) wave-sensitive cones. Thresholds were obtained on the plateau of the threshold-versus-intensity function of each isolated mechanism and were referred to the retina by using individual measurements of ocular media and macular pigment density. Age-related increases in foveal thresholds, specified at the retina, were found for all three cone mechanisms. Parallel sensitivity losses for each cone mechanism were also observed at 4 degrees and 8 degrees in the temporal retina. A significant positive correlation was found between foveal macular pigment density and the S-cone, but not the M- and L-cone, log sensitivity difference (0 degrees-8 degrees) specified at the retina. This relation is expected from the hypothesis that the macular pigment protects the photoreceptors from senescent losses in sensitivity. However, because this result is independent of age, it is interpreted as being due to local gain changes resulting from differential filtering of incident light by the macular pigment between the fovea and the parafovea