81 research outputs found
Spatial Proximity and Similarity of the Epigenetic State of Genome Domains
Recent studies demonstrate that the organization of the chromatin within the nuclear space might play a crucial role in the regulation of gene expression. The ongoing progress in determination of the 3D structure of the nuclear chromatin allows one to study correlations between spatial proximity of genome domains and their epigenetic state. We combined the data on three-dimensional architecture of the whole human genome with results of high-throughput studies of the chromatin functional state and observed that fragments of different chromosomes that are spatially close tend to have similar patterns of histone modifications, methylation state, DNAse sensitivity, expression level, and chromatin states in general. Moreover, clustering of genome regions by spatial proximity produced compact clusters characterized by the high level of histone modifications and DNAse sensitivity and low methylation level, and loose clusters with the opposite characteristics. We also associated the spatial proximity data with previously detected chimeric transcripts and the results of RNA-seq experiments and observed that the frequency of formation of chimeric transcripts from fragments of two different chromosomes is higher among spatially proximal genome domains. A fair fraction of these chimeric transcripts seems to arise post-transcriptionally via trans-splicing
Effects of climate and land-use changes on fish catches across lakes at a global scale
Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security
The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome
Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3′ flanks of genes than in their 5′ flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered
Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis
Supernova remnants: the X-ray perspective
Supernova remnants are beautiful astronomical objects that are also of high
scientific interest, because they provide insights into supernova explosion
mechanisms, and because they are the likely sources of Galactic cosmic rays.
X-ray observations are an important means to study these objects.And in
particular the advances made in X-ray imaging spectroscopy over the last two
decades has greatly increased our knowledge about supernova remnants. It has
made it possible to map the products of fresh nucleosynthesis, and resulted in
the identification of regions near shock fronts that emit X-ray synchrotron
radiation.
In this text all the relevant aspects of X-ray emission from supernova
remnants are reviewed and put into the context of supernova explosion
properties and the physics and evolution of supernova remnants. The first half
of this review has a more tutorial style and discusses the basics of supernova
remnant physics and thermal and non-thermal X-ray emission. The second half
offers a review of the recent advances.The topics addressed there are core
collapse and thermonuclear supernova remnants, SN 1987A, mature supernova
remnants, mixed-morphology remnants, including a discussion of the recent
finding of overionization in some of them, and finally X-ray synchrotron
radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2
column-layout. 78 pages, 42 figures. This replaced version has some minor
language edits and several references have been correcte
A Mouse Model for Osseous Heteroplasia
GNAS/Gnas encodes Gsa that is mainly biallelically expressed but shows imprinted expression in some tissues. In Albright Hereditary Osteodystrophy (AHO) heterozygous loss of function mutations of GNAS can result in ectopic ossification that tends to be superficial and attributable to haploinsufficiency of biallelically expressed Gsa. Oed-Sml is a point missense mutation in exon 6 of the orthologous mouse locus Gnas. We report here both the late onset ossification and occurrence of benign cutaneous fibroepithelial polyps in Oed-Sml. These phenotypes are seen on both maternal and paternal inheritance of the mutant allele and are therefore due to an effect on biallelically expressed Gsa. The ossification is confined to subcutaneous tissues and so resembles the ossification observed with AHO. Our mouse model is the first with both subcutaneous ossification and fibroepithelial polyps related to Gsa deficiency. It is also the first mouse model described with a clinically relevant phenotype associated with a point mutation in Gsa and may be useful in investigations of the mechanisms of heterotopic bone formation. Together with earlier results, our findings indicate that Gsa signalling pathways play a vital role in repressing ectopic bone formation
- …