45 research outputs found

    Gluons and the quark sea at high energies: distributions, polarization, tomography

    Get PDF
    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.Comment: 547 pages, A report on the joint BNL/INT/Jlab program on the science case for an Electron-Ion Collider, September 13 to November 19, 2010, Institute for Nuclear Theory, Seattle; v2 with minor changes, matches printed versio

    Modern Genomic Tools for Pigeonpea Improvement: Status and Prospects

    Get PDF
    Pigeonpea owing to its ability to sustain harsh environment and limited input/water requirement remains an excellent remunerative crop in the face of increasing climatic adversities. With nearly 70% share in global pigeonpea production, India is the leading pigeonpea producing country. Since the mid-1900s, constant research efforts directed to improve yield and resistance levels of pigeonpea have resulted in the development and deployment of several commercially accepted cultivars in India, accommodating into diverse agro-climatic zones. However, the crop productivity needs incremental improvements in order to meet the growing nutritional demands, especially in developing countries like India where pigeonpea forms a dominant part of vegetarian diet. Empowering crop improvement strategies with genomic tool kit is imperative to attain the project gains in crop yield. In the context, adoption of next-generation sequencing (NGS) technology has helped establish a wide range of genomic resources to support pigeonpea breeding, and the existing molecular tool kit includes genome-wide genetic markers, transcriptome/genome assemblies, and candidate genes/QTLs for target traits. Similarly, availability of whole mitochondrial genome sequence and derived DNA markers is immensely relevant in order to furthering the understanding of cytoplasmic male sterility (CMS) system and hybrid breeding. This chapter covers the progress of developing modern genomic resources in pigeonpea and highlights their vital role in designing future crop breeding schemes

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Not Available

    No full text
    Not AvailableRice grows mostly in tropical and subtropical regions, but it’s very sensitive to higher temperature during reproductive stage especially flowering anthesis. It is necessary to identify genetic donors for heat stress from high temperature rice growing environments. Temperature stress effects at reproductive stage by adopting three different planting dates with 15 days interval each in Environment-1 (e1), Environment-2 (e2) and Environment-3 (E3) with forty-three rice genotypes was studied. The temperature regimes were 35.60C (E1) to 39.2 (E3) at reproductive stage. From the results of AMMI analysis, the environment (E2) was found to be ideal for better identification of genotypes for heat tolerance with desirable traits. The elevated temperature at the time of flowering and maturity determines the yield per se of the genotypes. The hybrids adapted better than parental lines, showing the buffering nature and heterosis for stress tolerance. Under high temperature stress, the response of genotypes depended on developmental stage, but highest sensitivity was recorded at reproductive stage. The time of sowing, days to flowering (duration group), heat escape (early morning flowering) and inbuilt tolerance were the crucial factors in determining the performance of genotypes to varying temperature. Hence, it is necessary to select genotypes by keeping in view the above factors for different temperature stress within and across the environment.Not Availabl
    corecore