302 research outputs found
Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients
Mycophenolic acid (MPA), the active compound of mycophenolate mofetil (MMF), is used to prevent graft rejection in renal transplant recipients. MPA is glucuronidated to the metabolite MPAG, which exhibits enterohepatic recirculation (EHC). MPA binds for 97% and MPAG binds for 82% to plasma proteins. Low plasma albumin concentrations, impaired renal function and coadministration of cyclosporine have been reported to be associated with increased clearance of MPA. The aim of the study was to develop a population pharmacokinetic model describing the relationship between MMF dose and total MPA (tMPA), unbound MPA (fMPA), total MPAG (tMPAG) and unbound MPAG (fMPAG). In this model the correlation between pharmacokinetic parameters and renal function, plasma albumin concentrations and cotreatment with cyclosporine was quantified. tMPA, fMPA, tMPAG and fMPAG concentration–time profiles of renal transplant recipients cotreated with cyclosporine (n = 48) and tacrolimus (n = 45) were analyzed using NONMEM. A 2- and 1-compartment model were used to describe the pharmacokinetics of fMPA and fMPAG. The central compartments of fMPA and fMPAG were connected with an albumin compartment allowing competitive binding (bMPA and bMPAG). tMPA and tMPAG were modeled as the sum of the bound and unbound concentrations. EHC was modeled by transport of fMPAG to a separate gallbladder compartment. This transport was decreased in case of cyclosporine cotreatment (P < 0.001). In the model, clearance of fMPAG decreased when creatinine clearance (CrCL) was reduced (P < 0.001), and albumin concentration was correlated with the maximum number of binding sites available for MPA and MPAG (P < 0.001). In patients with impaired renal function cotreated with cyclosporine the model adequately described that increasing fMPAG concentrations decreased tMPA AUC due to displacement of MPA from its binding sites. The accumulated MPAG could also be reconverted to MPA by the EHC, which caused increased tMPA AUC in patients cotreated with tacrolimus. Changes in CrCL had hardly any effect on fMPA exposure. A decrease in plasma albumin concentration from 0.6 to 0.4 mmol/l resulted in ca. 38% reduction of tMPA AUC, whereas no reduction in fMPA AUC was seen. In conclusion, a pharmacokinetic model has been developed which describes the relationship between dose and both total and free MPA exposure. The model adequately describes the influence of renal function, plasma albumin and cyclosporine co-medication on MPA exposure. Changes in protein binding due to altered renal function or plasma albumin concentrations influence tMPA exposure, whereas fMPA exposure is hardly affected
The Max b-HLH-LZ Can Transduce into Cells and Inhibit c-Myc Transcriptional Activities
The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs
Allogamy-Autogamy Switch Enhance Assortative Mating in the Allotetraploid Centaurea seridis L. Coexisting with the Diploid Centaurea aspera L. and Triggers the Asymmetrical Formation of Triploid Hybrids
[EN] Hybridization between tetraploids and its related diploids is generally unsuccessful in Centaurea, hence natural formation of triploid hybrids is rare. In contrast, the diploid Centaurea aspera and the allotetraploid C. seridis coexist in several contact zones where a high frequency of triploid hybrids is found. We analyzed the floral biology of the three taxa to identify reproductive isolation mechanisms that allow their coexistence. Flowering phenology was recorded, and controlled pollinations within and between the three taxa were performed in the field. Ploidy level and germination of progeny were also assessed. There was a 50% flowering overlap which indicated a phenological shift. Diploids were strictly allogamous and did not display mentor effects, while tetraploids were found to be highly autogamous. This breakdown of self-incompatibility by polyploids is first described in Centaurea. The asymmetrical formation of the hybrid was also found: all the triploid intact cypselae came from the diploid mothers pollinated by the pollen of tetraploids. Pollen and eggs from triploids were totally sterile, acting as a strong triploid block. These prezygotic isolation mechanisms ensured higher assortative mating in tetraploids than in diploids, improving its persistence in the contact zones. However these mechanisms can also be the cause of the low genetic diversity and high genetic structure observed in C. seridis.Ferriol Molina, M.; Garmendia, A.; Ana Gonzalez; Merle Farinós, HB. (2015). Allogamy-Autogamy Switch Enhance Assortative Mating in the Allotetraploid Centaurea seridis L. Coexisting with the Diploid Centaurea aspera L. and Triggers the Asymmetrical Formation of Triploid Hybrids. PLoS ONE. 10(10):1-13. doi:10.1371/journal.pone.0140465S1131010Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., … dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. doi:10.1038/nature09916Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, 106(33), 13875-13879. doi:10.1073/pnas.0811575106ROMASCHENKO, K., ERTUǦRUL, K., SUSANNA, A., GARCIA-JACAS, N., UYSAL, T., & ARSLAN, E. (2004). New chromosome counts in the Centaurea Jacea group (Asteraceae, Cardueae) and some related taxa. Botanical Journal of the Linnean Society, 145(3), 345-352. doi:10.1111/j.1095-8339.2004.00292.xHardy, O. J., de Loose, M., Vekemans, X., & Meerts, P. (2001). Allozyme segregation and inter-cytotype reproductive barriers in the polyploid complex Centaurea jacea. Heredity, 87(2), 136-145. doi:10.1046/j.1365-2540.2001.00862.xKOUTECKÝ, P., BAĎUROVÁ, T., ŠTECH, M., KOŠNAR, J., & KARÁSEK, J. (2011). Hybridization between diploidCentaurea pseudophrygiaand tetraploidC. jacea(Asteraceae): the role of mixed pollination, unreduced gametes, and mentor effects. Biological Journal of the Linnean Society, 104(1), 93-106. doi:10.1111/j.1095-8312.2011.01707.xKoutecký, P. (2012). A diploid drop in the tetraploid ocean: hybridization and long-term survival of a singular population of Centaurea weldeniana Rchb. (Asteraceae), a taxon new to Austria. Plant Systematics and Evolution, 298(7), 1349-1360. doi:10.1007/s00606-012-0641-5Mráz, P., Španiel, S., Keller, A., Bowmann, G., Farkas, A., Šingliarová, B., … Müller-Schärer, H. (2012). Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones. Annals of Botany, 110(3), 615-627. doi:10.1093/aob/mcs120Olšavská, K., & Löser, C. J. (2013). Mating System and Hybridization of the Cyanus triumfetti and C. montanus Groups (Asteraceae). Folia Geobotanica, 48(4), 537-554. doi:10.1007/s12224-013-9155-3Španiel, S., Marhold, K., Hodálová, I., & Lihová, J. (2008). Diploid and Tetraploid Cytotypes of Centaurea stoebe (Asteraceae) in Central Europe: Morphological Differentiation and Cytotype Distribution Patterns. Folia Geobotanica, 43(2), 131-158. doi:10.1007/s12224-008-9008-7HARDY, O. J., VANDERHOEVEN, S., DE LOOSE, M., & MEERTS, P. (2000). Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytologist, 146(2), 281-290. doi:10.1046/j.1469-8137.2000.00631.xFerriol, M., Garmendia, A., Ruiz, J. J., Merle, H., & Boira, H. (2012). Morphological and molecular analysis of natural hybrids between the diploidCentaurea asperaL. and the tetraploidC. seridisL. (Compositae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 146(sup1), 86-100. doi:10.1080/11263504.2012.727878Ferriol, M., Merle, H., & Garmendia, A. (2014). Microsatellite evidence for low genetic diversity and reproductive isolation in tetraploidCentaurea seridis(Asteraceae) coexisting with diploidCentaurea asperaand triploid hybrids in contact zones. Botanical Journal of the Linnean Society, 176(1), 82-98. doi:10.1111/boj.12194Garmendia, A., Ferriol, M., Juarez, J., Zając, A., Kałużny, K., & Merle, H. (2015). A rare case of a natural contact zone in Morocco between an autopolyploid and an allopolyploid ofCentaurea asperawith sterile tetraploid hybrids. Plant Biology, 17(3), 746-757. doi:10.1111/plb.12284Petit, C., Bretagnolle, F., & Felber, F. (1999). Evolutionary consequences of diploid–polyploid hybrid zones in wild species. Trends in Ecology & Evolution, 14(8), 306-311. doi:10.1016/s0169-5347(99)01608-0Thorsson, A. T., Palsson, S., Sigurgeirsson, A., & Anamthawat-Jonsson, K. (2007). Morphological Variation among Betula nana (diploid), B. pubescens (tetraploid) and their Triploid Hybrids in Iceland. Annals of Botany, 99(6), 1183-1193. doi:10.1093/aob/mcm060Husband And, B. C., & Schemske, D. W. (2000). Ecological mechanisms of reproductive isolation between diploid and tetraploidChamerion angustifolium. Journal of Ecology, 88(4), 689-701. doi:10.1046/j.1365-2745.2000.00481.xKruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Dunn, O. J. (1961). Multiple Comparisons among Means. Journal of the American Statistical Association, 56(293), 52-64. doi:10.1080/01621459.1961.10482090HARVILLE, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika, 61(2), 383-385. doi:10.1093/biomet/61.2.383McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. doi:10.1007/978-1-4899-3242-6Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1), 1. doi:10.2307/1269547Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica, 57(2), 307. doi:10.2307/1912557Ferriol, M., Llorens, L., Gil, L., & Boira, H. (2008). Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L. Plant Systematics and Evolution, 277(1-2), 105-116. doi:10.1007/s00606-008-0110-3Colas, B., Olivieri, I., & Riba, M. (2001). Spatio-temporal variation of reproductive success and conservation of the narrow-endemic Centaurea corymbosa (Asteraceae). Biological Conservation, 99(3), 375-386. doi:10.1016/s0006-3207(00)00229-9Felber, F., & Bever, J. D. (1997). Effect of triploid fitness on the coexistence of diploids and tetraploids. Biological Journal of the Linnean Society, 60(1), 95-106. doi:10.1111/j.1095-8312.1997.tb01485.xPeckert, T., & Chrtek, J. (2006). Mating interactions between coexisting dipoloid, triploid and tetraploid cytotypes ofHieracium Echioides (Asteraceae). Folia Geobotanica, 41(3), 323-334. doi:10.1007/bf02904945HUSBAND, B. C. (2004). The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biological Journal of the Linnean Society, 82(4), 537-546. doi:10.1111/j.1095-8312.2004.00339.xStebbins, G. L. (1950). Variation and Evolution in Plants. doi:10.7312/steb94536Barringer, B. C. (2007). Polyploidy and self-fertilization in flowering plants. American Journal of Botany, 94(9), 1527-1533. doi:10.3732/ajb.94.9.1527Borges, L. A., Souza, L. G. R., Guerra, M., Machado, I. C., Lewis, G. P., & Lopes, A. V. (2012). Reproductive isolation between diploid and tetraploid cytotypes of Libidibia ferrea (= Caesalpinia ferrea) (Leguminosae): ecological and taxonomic implications. Plant Systematics and Evolution, 298(7), 1371-1381. doi:10.1007/s00606-012-0643-3Greiner, R., & Oberprieler, C. (2012). The role of inter-ploidy block for reproductive isolation of the diploid Leucanthemum pluriflorum Pau (Compositae, Anthemideae) and its tetra- and hexaploid relatives. Flora - Morphology, Distribution, Functional Ecology of Plants, 207(9), 629-635. doi:10.1016/j.flora.2012.07.001Ferrer, M. M., & Good-Avila, S. V. (2006). Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytologist, 173(2), 401-414. doi:10.1111/j.1469-8137.2006.01905.xSun, M., & Ritland, K. (1998). Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity, 80(2), 225-232. doi:10.1046/j.1365-2540.1998.00290.xHusband, B. C., & Sabara, H. A. (2003). Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist, 161(3), 703-713. doi:10.1046/j.1469-8137.2004.00998.xAwadalla, P., & Ritland, K. (1997). Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Molecular Biology and Evolution, 14(10), 1023-1034. doi:10.1093/oxfordjournals.molbev.a025708Reinartz, J. A., & Les, D. H. (1994). Bottleneck-Induced Dissolution of Self-Incompatibility and Breeding System Consequences in Aster furcatus (Asteraceae). American Journal of Botany, 81(4), 446. doi:10.2307/2445494Hiscock, S. J. (2000). Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity, 85(1), 10-19. doi:10.1046/j.1365-2540.2000.00692.xNIELSEN, L. R., SIEGISMUND, H. R., & PHILIPP, M. (2003). Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galápagos: remnants of a self-incompatibility system? Botanical Journal of the Linnean Society, 142(1), 93-101. doi:10.1046/j.1095-8339.2003.00168.xSonnleitner, M., Weis, B., Flatscher, R., García, P. E., Suda, J., Krejčíková, J., … Hülber, K. (2013). Parental Ploidy Strongly Affects Offspring Fitness in Heteroploid Crosses among Three Cytotypes of Autopolyploid Jacobaea carniolica (Asteraceae). PLoS ONE, 8(11), e78959. doi:10.1371/journal.pone.0078959Cui, C., Ge, X., Gautam, M., Kang, L., & Li, Z. (2012). Cytoplasmic and Genomic Effects on Meiotic Pairing inBrassicaHybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids. Genetics, 191(3), 725-738. doi:10.1534/genetics.112.140780Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews Genetics, 6(11), 836-846. doi:10.1038/nrg1711Mráz, P. (2003). Mentor effects in the genusHieracium S.STR. (Compositae, Lactuceae). Folia Geobotanica, 38(3), 345-350. doi:10.1007/bf02803204Husband, B. C., Schemske, D. W., Burton, T. L., & Goodwillie, C. (2002). Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid
Chamerion angustifolium. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1509), 2565-2571. doi:10.1098/rspb.2002.2196Baldwin, S. J., & Husband, B. C. (2010). Genome duplication and the evolution of conspecific pollen precedence. Proceedings of the Royal Society B: Biological Sciences, 278(1714), 2011-2017. doi:10.1098/rspb.2010.220
Environment influences on the aromatic character of nucleobases and amino acids
Geometric (HOMA) and magnetic (NICS) indices of aromaticity were estimated for aromatic rings of amino acids and nucleobases. Cartesian coordinates were taken directly either from PDB files deposited in public databases at the finest resolution available (≤1.5 Å), or from structures resulting from full gradient geometry optimization in a hybrid QM/MM approach. Significant environmental effects imposing alterations of HOMA values were noted for all aromatic rings analysed. Furthermore, even extra fine resolution (≤1.0 Å) is not sufficient for direct estimation of HOMA values based on Cartesian coordinates provided by PDB files. The values of mean bond errors seem to be much higher than the 0.05 Å often reported for PDB files. The use of quantum chemistry geometry optimization is strongly advised; even a simple QM/MM model comprising only the aromatic substructure within the QM region and the rest of biomolecule treated classically within the MM framework proved to be a promising means of describing aromaticity inside native environments. According to the results presented, three consequences of the interaction with the environment can be observed that induce changes in structural and magnetic indices of aromaticity. First, broad ranges of HOMA or NICS values are usually obtained for different conformations of nearest neighborhood. Next, these values and their means can differ significantly from those characterising isolated monomers. The most significant increase in aromaticities is expected for the six-membered rings of guanine, thymine and cytosine. The same trend was also noticed for all amino acids inside proteins but this effect was much smaller, reaching the highest value for the five-membered ring of tryptophan. Explicit water solutions impose similar changes on HOMA and NICS distributions. Thus, environment effects of protein, DNA and even explicit water molecules are non-negligible sources of aromaticity changes appearing in the rings of nucleobases and aromatic amino acids residues
IL-10 Suppression of NK/DC Crosstalk Leads to Poor Priming of MCMV-Specific CD4 T Cells and Prolonged MCMV Persistence
IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10-/-mice led to faster control of lytic viral replication, bu
Evolution of MicroRNA Genes in Oryza sativa and Arabidopsis thaliana: An Update of the Inverted Duplication Model
The origin and evolution of microRNA (miRNA) genes, which are of significance in tuning and buffering gene expressions in a number of critical cellular processes, have long attracted evolutionary biologists. However, genome-wide perspectives on their origins, potential mechanisms of their de novo generation and subsequent evolution remain largely unsolved in flowering plants. Here, genome-wide analyses of Oryza sativa and Arabidopsis thaliana revealed apparently divergent patterns of miRNA gene origins. A large proportion of miRNA genes in O. sativa were TE-related and MITE-related miRNAs in particular, whereas the fraction of these miRNA genes much decreased in A. thaliana. Our results show that the majority of TE-related and pseudogene-related miRNA genes have originated through inverted duplication instead of segmental or tandem duplication events. Based on the presented findings, we hypothesize and illustrate the four likely molecular mechanisms to de novo generate novel miRNA genes from TEs and pseudogenes. Our rice genome analysis demonstrates that non-MITEs and MITEs mediated inverted duplications have played different roles in de novo generating miRNA genes. It is confirmed that the previously proposed inverted duplication model may give explanations for non-MITEs mediated duplication events. However, many other miRNA genes, known from the earlier proposed model, were rather arisen from MITE transpositions into target genes to yield binding sites. We further investigated evolutionary processes spawned from de novo generated to maturely-formed miRNA genes and their regulatory systems. We found that miRNAs increase the tunability of some gene regulatory systems with low gene copy numbers. The results also suggest that gene balance effects may have largely contributed to the evolution of miRNA regulatory systems
Removal of the endocrine disrupter butyl benzyl phthalate from the environment
Butyl benzyl phthalate (BBP), an aryl alkyl ester of 1,2-benzene dicarboxylic acid, is extensively used in vinyl tiles and as a plasticizer in PVC in many commonly used products. BBP, which readily leaches from these products, is one of the most important environmental contaminants, and the increased awareness of its adverse effects on human health has led to a dramatic increase in research aimed at removing BBP from the environment via bioremediation. This review highlights recent progress in the degradation of BBP by pure and mixed bacterial cultures, fungi, and in sludge, sediment, and wastewater. Sonochemical degradation, a unique abiotic remediation technique, and photocatalytic degradation are also discussed. The degradation pathways for BBP are described, and future research directions are considered
Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor
The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10−8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT
- …