1,606 research outputs found

    Hadronic production of squark-squark pairs: The electroweak contributions

    Get PDF
    We compute the electroweak (EW) contributions to squark--squark pair production processes at the LHC within the framework of the Minimal Supersymmetric Standard Model (MSSM). Both tree-level EW contributions, of O(alpha_s alpha + alpha^2), and next-to-leading order (NLO) EW corrections, of O(alpha_s^2 alpha), are calculated. Depending on the flavor and chirality of the produced quarks, many interferences between EW-mediated and QCD-mediated diagrams give non-zero contributions at tree-level and NLO. We discuss the computational techniques and present an extensive numerical analysis for inclusive squark--squark production as well as for subsets and single processes. While the tree-level EW contributions to the integrated cross sections can reach the 20% level, the NLO EW corrections typically lower the LO prediction by a few percent.Comment: 36 pages, 18 figure

    Hadronic production of bottom-squark pairs with electroweak contributions

    Get PDF
    We present the complete computation of the tree-level and the next-to-leading order electroweak contributions to bottom-squark pair production at the LHC. The computation is performed within the minimal supersymmetric extension of the Standard Model. We discuss the numerical impact of these contributions in several supersymmetric scenarios.Comment: 33 pages, v2: preprint numbers correcte

    Spatially-resolved electronic and vibronic properties of single diamondoid molecules

    Full text link
    Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic band gaps, optical properties, thermal transport, and mechanical strength at the nanoscale. The recently-discovered higher diamondoids (each containing more than three diamond cells) have thus generated much excitement in regards to their potential versatility as nanoscale devices. Despite this excitement, however, very little is known about the properties of isolated diamondoids on metal surfaces, a very relevant system for molecular electronics. Here we report the first molecular scale study of individual tetramantane diamondoids on Au(111) using scanning tunneling microscopy and spectroscopy. We find that both the diamondoid electronic structure and electron-vibrational coupling exhibit unique spatial distributions characterized by pronounced line nodes across the molecular surfaces. Ab-initio pseudopotential density functional calculations reveal that the observed dominant electronic and vibronic properties of diamondoids are determined by surface hydrogen terminations, a feature having important implications for designing diamondoid-based molecular devices.Comment: 16 pages, 4 figures. to appear in Nature Material

    Light MSSM Higgs boson mass to three-loop accuracy

    Full text link
    The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy within the Minimal Supersymmetric Standard Model (MSSM). The result is expressed in terms of DRbar parameters and implemented in the computer program H3m. The calculation is based on the proper approximations and their combination in various regions of the parameter space. The three-loop effects to Mh are typically of the order of a few hundred MeV and opposite in sign to the two-loop corrections. The remaining theory uncertainty due to higher order perturbative corrections is estimated to be less than 1 GeV.Comment: 39 pages, 13 figures. v2: minor changes, typos fixe

    Maria Auxiliadora Hospital in Lima, Peru as a model for neurosurgical outreach to international charity hospitals

    Get PDF
    A myriad of geopolitical and financial obstacles have kept modern neurosurgery from effectively reaching the citizens of the developing world. Targeted neurosurgical outreach by academic neurosurgeons to equip neurosurgical operating theaters and train local neurosurgeons is one method to efficiently and cost effectively improve sustainable care provided by international charity hospitals. The International Neurosurgical Children’s Association (INCA) effectively improved the available neurosurgical care in the Maria Auxiliadora Hospital of Lima, Peru through the advancement of local specialist education and training. Neurosurgical equipment and training were provided for the local neurosurgeons by a mission team from the University of California at San Diego. At the end of 3 years, with one intensive week trip per year, the host neurosurgeons were proficiently and independently applying microsurgical techniques to previously performed operations, and performing newly learned operations such as neuroendoscopy and minimally invasive neurosurgery. Our experiences may serve as a successful template for the execution of other small scale, sustainable neurosurgery missions worldwide

    NLO QCD bottom corrections to Higgs boson production in the MSSM

    Get PDF
    We present a calculation of the two-loop bottom-sbottom-gluino contributions to Higgs boson production via gluon fusion in the MSSM. The calculation is based on an asymptotic expansion in the masses of the supersymmetric particles, which are assumed to be much heavier than the bottom quark and the Higgs bosons. We obtain explicit analytic results that allow for a straightforward identification of the dominant contributions in the NLO bottom corrections. We emphasize the interplay between the calculations of the masses and the production cross sections of the Higgs bosons, discussing sensible choices of renormalization scheme for the parameters in the bottom/sbottom sector.Comment: 25 pages, 4 figures. v2: references and two figures added, version published in JHE

    Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in χ20→ℓ~ ℓ→ℓ ℓ χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Working in the framework of the cMSSM extended by three right-handed neutrino superfields, we conduct a systematic analysis addressing the simultaneous implications of the SUSY seesaw for both high- and low-energy lepton flavour violation. We discuss how the confrontation of slepton mass splittings as observed at the LHC and low-energy LFV observables may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte

    The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population

    Get PDF
    Background: The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise,1 % to 70 % (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings: The investigated population (F10 lineage) contributed on average 11 % to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions: Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigate
    • …
    corecore