83 research outputs found

    Landscape genomics reveals regions associated with adaptive phenotypic and genetic variation in Ethiopian indigenous chickens

    Get PDF
    Climate change is a threat to sustainable livestock production and livelihoods in the tropics. It has adverse impacts on feed and water availability, disease prevalence, production, environmental temperature, and biodiversity. Unravelling the drivers of local adaptation and understanding the underlying genetic variation in random mating indigenous livestock populations informs the design of genetic improvement programmes that aim to increase productivity and resilience. In the present study, we combined environmental, genomic, and phenotypic information of Ethiopian indigenous chickens to investigate their environmental adaptability. Through a hybrid sampling strategy, we captured wide biological and ecological variabilities across the country. Our environmental dataset comprised mean values of 34 climatic, vegetation and soil variables collected over a thirty-year period for 260 geolocations. Our biological dataset included whole genome sequences and quantitative measurements (on eight traits) from 513 individuals, representing 26 chicken populations spread along 4 elevational gradients (6–7 populations per gradient). We performed signatures of selection analyses (and XP-EHH) to detect footprints of natural selection, and redundancy analyses (RDA) to determine genotype-environment and genotype-phenotype-associations. RDA identified 1909 outlier SNPs linked with six environmental predictors, which have the highest contributions as ecological drivers of adaptive phenotypic variation. The same method detected 2430 outlier SNPs that are associated with five traits. A large overlap has been observed between signatures of selection identified byand XP-EHH showing that both methods target similar selective sweep regions. Average genetic differences measured by are low between gradients, but XP-EHH signals are the strongest between agroecologies. Genes in the calcium signalling pathway, those associated with the hypoxia-inducible factor (HIF) transcription factors, and sports performance (GALNTL6) are under selection in high-altitude populations. Our study underscores the relevance of landscape genomics as a powerful interdisciplinary approach to dissect adaptive phenotypic and genetic variation in random mating indigenous livestock populations

    Big bounce from spin and torsion

    Full text link
    The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density ϵgT4\epsilon\propto gT^4 was on the order of n2/mPl2n^2/m_\textrm{Pl}^2 (in natural units), where ngT3n\propto gT^3 is the fermion number density and gg is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g100g\approx 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 103210^{32} times smaller than its present value, giving \approx 50 \mum. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.Comment: 6 pages; published versio

    Qualidade sanitária e fisiológica de sementes de abóbora variedade menina Brasileira.

    Get PDF
    O trabalho teve como objetivos avaliar e correlacionar a qualidade sanitária e fisiológica de sementes de abóbora, variedade Menina Brasileira (Cucurbita moschata.). Foram avaliados dois lotes de sementes de abóbora produzidas no sistema agroecológico e quatro no sistema convencional, com e sem tratamento químico. Os lotes foram submetidos aos testes de sanidade, seguindo a metodologia do “Blotter test”, com congelamento, germinação e vigor (primeira contagem, índice de velocidade de germinação, envelhecimento acelerado e emergência de plântulas). Os resultados indicaram a separação dos lotes de diferentes origens a partir da qualidade sanitária e fisiológica, onde as maiores incidências de fungos foram observadas nos lotes agroecológicos e o maior potencial fisiológico foi observado nos lotes de origem convencional não tratados. Foram encontrados os fungos Fusarium oxysporum, Alternaria alternata, Cladosporium cucumerinum, Aspergillus niger, Penicillium digitatum, Rhizopus stolonifer e Phoma terrestris. A qualidade sanitária não interferiu na qualidade fisiológica das sementes de abóbora, variedade Menina Brasileira

    Seed-borne pathogens and electrical conductivity of soybean seeds

    Get PDF
    Adequate procedures to evaluate seed vigor are important. Regarding the electrical conductivity test (EC), the interference in the test results caused by seed-borne pathogens has not been clarified. This research was carried out to study the influence of Phomopsis sojae (Leh.) and Colletotrichum dematium (Pers. ex Fr.) Grove var. truncata (Schw.) Arx. fungi on EC results. Soybean seeds (Glycine max L.) were inoculated with those fungi using potato, agar and dextrose (PDA) medium with manitol (-1.0 MPa) and incubated for 20 h at 25 °C. The colony diameter, index of mycelial growth, seed water content, occurrence of seed-borne pathogens, physiological potential of the seeds, measured by germination and vigor tests (seed germination index, cold test, accelerated aging and electrical conductivity), and seedling field emergence were determined. The contents of K+, Ca2+, and Mg2+ in the seed and in the soaking solution were also determined. A complete 2 × 4 factorial design with two seed sizes (5.5 and 6.5 mm) and four treatments (control, seeds incubated without fungi, seeds incubated with Phomopsis and seeds incubated with Colletotrichum) were used with eight (5.5 mm large seeds) and six (6.5 mm large seeds) replications. All seeds submitted to PDA medium had their germination reduced in comparison to the control seeds. This reduction was also observed when seed vigor and leached ions were considered. The presence of Phomopsis sojae fungus in soybean seed samples submitted to the EC test may be the cause of misleading results

    A new species of Dichaea (Orchidaceae) for northern Brazil

    Get PDF
    Dichaea é o maior gênero da subtribo Zygopetalinae e possui sua maior diversidade de espécies na América do Sul. Diante disto, este trabalho teve o objetivo de descrever uma nova espécie de Dichaea ocorrente na região norte do Brasil, Dichaea bragae Valsko, Krahl & Holanda. A nova espécie foi coleta ao norte de Manaus em área de floresta ombrifila e floresceu em cultivo. O epíteto é em homenagem ao Dr. Pedro Ivo Soares Braga (in memorian), orquidilogo que realizou vários estudos na Amazônia brasileira. A nova espécie possui afinidade com espécies de Dichaea serão Dichaeopsis, contudo são diferenciadas vegetativamente e na morfologia do labelo

    A de novo paradigm for male infertility

    Get PDF
    Funding Information: (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E. Funding Information: We are grateful for the participation of all patients and their parents in this study. We thank Laurens van de Wiel (Radboudumc), Sebastian Judd-Mole (Monash University), Arron Scott and Bryan Hepworth (Newcastle University) for technical support, and Margot J Wyrwoll (University of Münster) for help with handling MERGE samples and data. This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” Publisher Copyright: © 2022, The Author(s).De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.publishersversionpublishe
    corecore