348 research outputs found

    Lagrangian approach to a symplectic formalism for singular systems

    Get PDF
    We develop a Lagrangian approach for constructing a symplectic structure for singular systems. It gives a simple and unified framework for understanding the origin of the pathologies that appear in the Dirac-Bergmann formalism, and offers a more general approach for a symplectic formalism, even when there is no Hamiltonian in a canonical sense. We can thus overcome the usual limitations of the canonical quantization, and perform an algebraically consistent quantization for a more general set of Lagrangian systems.Comment: 30 page

    Podolsky Electromagnetism at Finite Temperature: Implications on Stefan-Boltzmann Law

    Get PDF
    In this work we study Podolsky electromagnetism in thermodynamic equilibrium. We show that a Podolsky mass-dependent modification to the Stefan-Boltzmann law is induced and we use experimental data to limit the possible values for this free parameter.Comment: 13 pages, submitted to Physical Review

    Chiral bosons and improper constraints

    Get PDF
    We argue that a consistent quantization of the Floreanini-Jackiw model, as a constrained system, should start by recognizing the improper nature of the constraints. Then each boundary conditon defines a problem which must be treated sparately. The model is settled on a compact domain which allows for a discrete formulation of the dynamics; thus, avoiding the mixing of local with collective coordinates. For periodic boundary conditions the model turns out to be a gauge theory whose gauge invariant sector contains only chiral excitations. For antiperiodoc boundary conditions, the mode is a second-class theory where the excitations are also chiral. In both cases, the equal-time algebra of the quantum energy-momentum densities is a Virasoro algebra. The Poincar\'e symmetry holds for the finite as well as for the infinite domain.Comment: 13 pages, Revtex file, IF.UFRGS Preprin
    corecore