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Abstract

In this work we study Podolsky electromagnetism in thermodynamic equilibrium. We show

that a Podolsky mass-dependent modification to the Stefan-Boltzmann law is induced and we use

experimental data to limit the possible values for this free parameter.
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I. INTRODUCTION

Electromagnetism is a U(1) gauge theory [1]. The electromagnetic field emerges from

the application of the gauge principle to the local Abelian group. This principle tells us

that the electromagnetic field must be a Lorentz vector with some well-defined internal

properties. What the principle does not tell us is which is the highest order of the field

derivatives appearing in the Lagrangian of the theory. Usually, we just invoke Occam’s razor

and use the simplest one: a Lagrangian with only first-order derivatives. It is well known

that there exist Lagrangian densities of second-order derivatives which are equivalent to

Lagrangian densities with derivatives of only first order. For instance, consider the following

two Lagrangian densities for the real scalar field: L1 = 1
2
∂µφ∂µφ+V (φ) and L2 = −1

2
φ�φ+

V (φ). They both lead to the same equation of motion [2]. Since they lead to the very

same physical consequences, we are free to choose either one or the other. This situation

is unlike what occurs with the electromagnetic field. It has been proved that there is only

one extension (up to a total-divergence term) for a second-order derivative Lagrangian for

electromagnetism that is both Lorentz and gauge-invariant [3]. This extension is known as

Podolsky electromagnetism, after Boris Podolsky has first proposed it in 1942 [4]. As we shall

review in the next section, Podolsky Lagrangian does not lead to the equations of motion

expected from the Maxwell theory. Therefore, they are non-equivalent descriptions of the

Abelian gauge field.

Podolsky electromagnetism depends on a free parameter. The way used to fix the Podol-

sky parameter is the same one used to set bounds on the values of all free parameters of

the Standard Model of Elementary Particles: it can only be fixed from experiments [5]. In-

deed, this is one of the aims of this paper. Besides, despite its long-dated success, Maxwell

electromagnetism still has unsolved problems. In the classical level, for example, the elec-

trostatic potential diverges over punctual electric charges. On the other hand, Podolsky’s

electrostatic potential is finite everywhere [4]. In addition, using Podolsky theory, Frenkel

was able to solve the famous “4/3 problem of classical electrodynamics” [6], while in the

context of Maxwell theory this problem remains open. Furthermore, Podolsky theory of

electromagnetic interaction presents a richer theoretical structure than a theory with only

first-order derivatives. Finally, with Podolsky electromagnetism there is the possibility of

new Physics. We see, then, that Podolsky theory is interesting from both theoretical and
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experimental points of view.

In 1901, Planck’s pioneer and now famous work on black body radiation led to the

foundations of Quantum Physics. In order to fit the available data, Planck postulated

that the energy exchanging between cavity oscillators and the Maxwell electromagnetic field

in thermal equilibrium is quantized. Under these assumptions he derived the frequency

distribution of the black body radiation. In his work, Planck was also able to deduce the

Stefan-Boltzmann law, which states that the power for unit area of the black body radiation

grows with the fourth power of the temperature. We can cite as an example of Planckian

black body distribution the Cosmic Microwave Background Radiation (CMBR) [7]. In fact,

with precise data, CMBR was considered the most accurate black body radiation measured

up to date [8]. Nowadays, Planck’s law can be derived using modern methods of Quantum

Field Theory at Finite Temperature [9, 10, 11]. In this context, black body radiation is seen

as a gas of Maxwell photons in thermodynamic equilibrium. In the light of this thought, in

the present work we investigate a gas of Podolsky photons at thermal equilibrium and we

seek the finite-temperature properties of the Podolsky theory. Through use of imaginary-

time technique from Finite-Temperature Field Theory we construct the partition function

of the theory after determining its constraint structure. From the partition function we are

able to evaluate all thermodynamical quantities, including the energy density distribution.

We expect a modification on the Stefan-Boltzmann law due to the presence of the term that

contains higher-order derivatives in the Podolsky Lagrangian density. Finaly, we compare

our results with experimental data for the Stefan-Boltzmann law at CMBR temperature

and we set a thermodynamical limit on the Podolsky parameter.

This paper is organized as follows. In section II we review the canonical structure of

Podolsky electromagnetism. In section III we work on the path integral formulation of the

transition amplitude which is a step to the attainment of the Partition Function of the

problem. In section IV we use imaginary-time formalism and deal with the problem of

evaluating the Partition Function. In that section we also show the Podolsky correction to

the Stefan-Boltzmann law and we use experimental data to limit the free parameter of the

theory. Our final remarks are presented in section V.
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II. GENERAL ASPECTS OF PODOLSKY THEORY’S CANONICAL STRUC-

TURE

The content of this section is by no means new. We intend only to review some general

aspects of the canonical structure of Podolsky electromagnetism.

The Lagrangian density for Podolsky theory is1 [4]

L = −1

4
FµνF

µν +
1

2m2
∂µF µν∂ξF

ξ
ν , (1)

where, like in Maxwell’s case, the field-strength tensor is Fµν = ∂µAν − ∂νAµ. The free

parameter m has dimension of energy and in the limit |m| → ∞ we recover the Maxwell

Lagrangian density. The Euler-Lagrange equations for this theory are

(

� + m2
)

∂µF
µν = 0. (2)

As we have anticipated in the introductory section, these equations of motion differ from

those of Maxwell theory. Therefore, the Physical contents of the Podolsky theory do not

coincide with those of Maxwell theory.

The symmetric Energy-Momentum density tensor reads [12]:

T µν = F µ
λF

λν − ηµνL +
1

m2

(

2∂λF µξ∂λF
ν
ξ − 2∂λF ξµ∂ξF

ν
λ + ∂λF

λµ∂ξF
ξν

)

. (3)

The energy density E is the component 00 of this tensor. It is possible to write E in terms

of the electric and magnetic fields:

E =
1

2

{

E2 + B2 +
1

m2

[

(∇ · E)2 +
(

Ė −∇× B
)2

+ 4E · �E + 4E · ∇ (∇ · E)

]}

. (4)

This expression does not appear to be positive-definite in the general case. However, if

we restrict it to the electrostatic case, we have for the energy [4]:

Eelectrost. =

∫

d3x Eelectrost. =
1

2

∫

d3x

[

E2 +
1

m2
(∇ · E)2

]

. (5)

1 Throughout this work we set natural unit system, the metric signature (+ −−−), and � ≡ ∂µ∂µ as long

as we work in the Minskowski spacetime.
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Once we impose the condition Eelectrost. ≥ 0, we have the implication that the parameter

m must be real and, without loss of generality, we assume it to be positive.

Now, we can impose the generalized Lorenz condition (� + m2) ∂µA
µ = 0 on the Podolsky

field and the equations of motion (2) become simplified [13]:

(

� + m2
)

�Aµ = 0. (6)

One possible solution to this equation can be written as

Aµ = Aµ
M + Aµ

P , (7)

where Aµ
M satisfy the equations of motion of Maxwell electromagnetism �Aµ

M = 0 and Aµ
P

satisfies the Proca equations (� + m2)Aµ
P = 0. Here we notice a notable difference between

Maxwell and Podolsky theories. Although Maxwell field has only four components (one for

each spacetime direction), Podolsky’s has eight. For each direction the Podolsky vector field

has one massless and one massive sectors, as it is seen in (7). This interpretation will be

useful in the next sections.

We can write the canonical Hamiltonian of Podolsky theory HC as

HC =

∫

d3x
(

pµȦ
µ + πµÄµ − L

)

, (8)

with the momenta defined as

pµ ≡ ∂L
∂

(

Ȧµ

) − ∂0





∂L
∂

(

Äµ

)



 − ∂k





∂L
∂ (∂0∂kAµ)

+
∂L

∂
(

∂kȦµ

)



 ; (9)

πµ ≡ ∂L
∂

(

Äµ

) , (10)

which are canonically conjugated respectively to the fields Aµ and ϕµ ≡ Ȧµ, which is con-

sidered as an independent variable.

Expliciting these quantities
(

HC =
∫

d3xHC

)

:
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pµ = − F0µ +
1

m2

(

ηk
µ∂k∂jF

j0 − ∂0∂νF
ν
µ

)

; (11)

πµ =
1

m2

(

∂νF
ν
µ − η0

µ∂kF
k
µ

)

; (12)

HC = − p · −→ϕ − 1

2
m2−→π 2 + πk∂jF

jk − 1

2

(−→ϕ + ∇A0
)2

+

− 1

2m2

(

∇2A0 + ∇ · −→ϕ
)2

+
1

4
F jkF jk. (13)

Now, we can follow the steps of reference [13] for the constraint analysis a la Dirac [14]

and find that there are three (unlike only two found in Maxwell theory) first class constraints:

φ1 ≡π0 ≈ 0; (14)

φ2 ≡ p0 −∇ · −→π ≈ 0; (15)

φ3 ≡∇ · p ≈ 0, (16)

with the usual notation the symbol “≈” means weak equality. Following Dirac’s procedure,

we choose three gauge conditions:

Ω1 ≡ϕ0 ≈ 0; (17)

Ω2 ≡
(

� + m2
)

∇ · A ≈ 0; (18)

Ω3 ≡A0 ≈ 0. (19)

It was shown in [13] that this set constitutes an appropriated non-covariant gauge con-

dition which fixes the first-class constraints. Solution (7) has made it clear that Podolsky

electromagnetic field has eight apparently independent components. However, gauge condi-

tions (17-19) reduces this number to five. Five “degrees of freedom” (d. o. f.) are compatible

with the interpretation that Podolsky field is composed of a Maxwell field (with two d. o.

f.) plus a Proca field (which has three d. o. f.).

III. PATH INTEGRAL FORMALISM

Once constraint analysis is done, we are able to write down the generating functional

with null sources (or transition amplitude):
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Z̃ =

∫

DpσDπςDAσDϕς det {Ωa, φb}
[

3
∏

n=1

δ [φn] δ [Ωn]

]

exp

(

i

∫

d4xLC

)

(20)

where

det {Ωa, φb} = det
[(

� + m2
)

∇2
]

; (21)

LC = pµ∂tA
µ + πµ∂tϕ

µ −HC . (22)

After some steps not quite different from those of Maxwell’s case, we can rewrite the

transition amplitude as

Z̃ =

∫

[

3
∏

σ=0

DAσ

]

det
[(

� + m2
)

∇2
]

δ
[(

� + m2
)

∇ · A
]

exp

(

i

∫

d4xL
)

(23)

with L given by equation (1).

Using a straight-forward generalization of the Faddeev-Popov ansätz, we can pass from

a non-covariant gauge fixing to a covariant one:

Z̃ =

∫

[

3
∏

σ=0

DAσ

]

det

[

1

ρ

(

� + m2
)

�

]

δ

[

1

ρ

(

� + m2
)

∂ςA
ς − f

]

exp

(

i

∫

d4xL
)

, (24)

where ρ 6= 0 is an arbitrary real number and f = f(x) is an arbitrary real function. Physical

quantities are independent of the function f(x). So, we “sum” Z̃ over all functions f ,

considering the weight factor exp
(

− i
2

∫

d4xf 2
)

:

Z̄ ≡
∫

DfZ̃ exp

(

− i

2

∫

d4xf 2

)

=

∫

Dc̄Dc

[

3
∏

σ=0

DAσ

]

exp

(

i

∫

d4xLeff

)

, (25)

where c̄ and c are ghost fields. The effective Lagrangian density Leff is defined as

Leff ≡ −1

4
FµνF

µν +
1

2m2
∂µF µν∂ξF

ξ
ν −

1

2ρ2

[(

� + m2
)

∂µA
µ
]2 − 1

ρ
c̄
(

� + m2
)

�c. (26)

So far we have studied Podolsky theory at zero temperature. In the next section we will

analyze the theory in thermodynamic equilibrium.

7



IV. FINITE TEMPERATURE

It is possible to obtain the Partition Function from the transition amplitude (25). Once

the Partition Function is carried out, all thermodynamical properties of the system becomes

available. In order to obtain the Partition Function from the transition amplitude we just

have to perform an Euclideanization of the time components of the vector fields, a compact-

ification of the Wick-rotated time coordinate and impose periodic boundary conditions (P )

in this coordinate for the electromagnetic and the ghost fields [10].2 Doing so, we find the

Partition Function for the free Podolsky field:

Z(β) =

∫

P

Dc̄Dc

[

3
∏

σ=0

DAσ

]

exp

(

−
∫

β

dxLE

)

, (27)

where β ≡ 1/T , T is the temperature, and we use the notation

∫

β

dx ≡
∫ β

0

dτ

∫

d3x; (28)

∆ ≡ − ∂γ∂γ ; (29)

LE ≡ − 1

4
FζλFζλ −

1

2m2
∂ζFζλ∂ξFξλ+

− 1

2ρ2

[(

∆ + m2
)

∂λAλ

]2 − 1

ρ
c̄
(

∆ + m2
)

∆c. (30)

LE is called the effective Euclidean Lagrangian density. Since there is no coupling among

the electromagnetic field and the ghost fields, the Partition Function takes the form

Z (β) =

∫

P

Dc̄Dc exp

{

−
∫

β

dx

[

1

ρ
c̄
(

∆ + m2
)

∆c

]}

×

×
∫

P

[

3
∏

σ=0

DAσ

]

exp

(

−1

2

∫

β

dxAαMαγAγ

)

= det

[

1

ρ

(

∆ + m2
)

∆

]

[Det (Mαγ)]
− 1

2 , (31)

2 The Euclideanization follows as x0 → −iτ (and therefore ∂0 → i∂/∂τ ≡ i∂τ ) and A0 → −iAE
0

≡ −iA0.

All summations are performed with Euclidean metric from now on [15].
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where “det” stands for the determinant in the Hilbert space alone (as usual) and “Det”

stands for the determinant in both Euclidean spacetime and the Hilbert space. The operator

Mαγ is defined as

Mαγ ≡
(

1 +
∆

m2

)

∆δαγ +

(

1 +
∆

m2

)

[

1 +

(

m2

ρ

)2 (

1 +
∆

m2

)

]

∂α∂γ . (32)

After evaluating the determinant in the Euclidean spacetime we find

Z (β) = [det (∆)]−1 [

det
(

∆ + m2
)]− 3

2 . (33)

We note that the Partition Function is a product of determinants of the form
[

det
(

∆ + m2
j

)]−
nj

2 , with j = 1, and 2. Each of these terms describes a gas of free par-

ticles with mass mj and nj d. o. f. We identify the first of these determinants as a partition

function for massless particles with two d. o. f., i. e., Maxwell photons. On the other

hand, the second determinant is the partition function for particles of mass m and three

d. o. f. Those are Proca particles. Since Z (β) involves no other terms, it describes a gas

formed of non-interacting gases of free Maxwell photons and free Proca bosons. The “non-

interaction” property between the two distinct gases is a direct consequence of Podolsky

theory’s linearity.

In order to evaluate the determinants we note that the equation

det
(

∆ + m2
)

=
∏

n,p

β2
[

ω2
n + ω2 (p, m)

]

, (34)

with the relativistic energy-momentum relation ω (p, m) ≡
√

p2 + m2 and the bosonic Mat-

subara frequencies ωn ≡ 2nπ/β, remains valid for both massive and massless cases [11].

Using this identity, the logarithm of the Partition Function reads

ln [Z (β)] = −
∑

n,p

ln
[

β2
(

ω2
n + p2

)]

− 3

2

∑

n,p

ln
{

β2
[

ω2
n + ω2 (p, m)

]}

. (35)

After evaluating the sum in n, passing to continuous in momentum space, and discharging

irrelevant β-independent terms and vacuum contributions, we have:
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ln [Z (β, V )] = −2V

∫

d3p

(2π)3
ln

(

1 − e−βp
)

− 3V

∫

d3p

(2π)3
ln

[

1 − eβω(p,m)
]

. (36)

The first term in the r. h. s. of (36) is associated with a gas of free Maxwell photons

and it gives the Planck’s law. Since it can be found in many text books we shall skip its

computation. The second term, on the other hand, corresponds to the massive sector of the

theory. This term depends on the Podolsky parameter and shall give a correction to the

Stefan-Boltzmann law. Calling the m-dependent term as ln (Z ′) we find, after changing the

integration variable to x ≡ ω/m:3

ln (Z ′) =
m4βV

2π2

∞
∑

k=1

∫ ∞

1

dx
(

x2 − 1
)2− 1

2 e−kβmx. (37)

In order to write this expression in a compact form we use the following representation

of the Modified Bessel Function of the Second Kind, valid for n > −1/2 [16]:

Kn(z) =

√
π

Γ
(

n + 1
2

)

(z

2

)n
∫ ∞

1

e−zx
(

x2 − 1
)n− 1

2 dx, (38)

where Γ(y) is the Gamma Function. We can now write

ln (Z ′) =
3

2

βm4V

π2

∞
∑

k=1

K2 (kβm)

(kβm)2 . (39)

As far as we know, there is no known analytical, closed form to the summation appearing

in this equation. Hence, we restrict ourselves to evaluate ln (Z ′) only approximately. We

recall that in the limit m → ∞ the results found using Podolsky electromagnetism must go to

the usual results of Maxwell theory. For this reason, we expect ln Z ′ to be a correction to the

Planck law. In thermodynamic equilibrium, temperature is a natural scale of energy. In this

sense, we will evaluate the correction to Stefan-Boltzmann law in the regime βm = m/T ≫ 1.

So, we can write

K2 (kβm) ∼
√

π

2kβm
e−kβm (40)

3 The sum over k arises from the expansion of
(

1 − e−βω
)−1

.

10



and keep only the first term of the sum in (39). Within this approximation, we can solve

equation (36):

ln [Z (β, V ; m)] =
π2

45

V

β3
+ 3V

(

m

2πβ

)
3

2

e−βm. (41)

The first term in the r. h. s. of this equation is the usual Planck result. The second

term is a correction due to the Podolsky mass. This equation enables us to evaluate any

thermodynamical quantity. The energy density u (T ; m), for instance, is found to be

u (T ; m) = − 1

V

∂ ln [Z (β, V ; m)]

∂β

∣

∣

∣

∣

V

= σ (T, m) T 4, (42)

with σ (T, m) = σ0 + δσ (m/T ), where σ0 = π2/15 is the Stefan-Boltzmann constant and

δσ
(m

T

)

=
45σ0√

8π7

(m

T

)
5

2

e−
m
T (43)

is the correction due to the Podolsky parameter. As we can see, in the limit m/T → ∞,

σ (T, m) goes to σ0 and we recover the Stefan-Boltzmann law in (42) as expected.

Equation (43) can be used to set a limit on the possible values of Podol-

sky parameter. The experimental value for Stefan-Boltzmann constant is σ0 =

(5, 670277968× 10−8 ± 4 × 10−13) W/(m2K4) [17]. Since so far we have not detected any

sensible deviation from the Stefan-Boltzmann law, the correction δσ (m/T ) must be at most

equal to the experimental error in the Stefan-Boltzmann constant. Our results showed that

such a correction depends on the temperature of the black body radiation. Recalling that

CMBR shows a very accurate black body spectrum, we set T = 2, 725K (the temperature

of CMBR) and we find that all values for the Podolsky mass such that m & 4, 0 meV are

compatible with the experimental data.

V. FINAL REMARKS

In this work we studied the Podolsky theory for electromagnetism at finite temperature.

We have reviewed the canonical structure of the theory and have noted that even though

both Maxwell and Podolsky Lagrangians are possible choices for the Abelian gauge group,

they give rise different physical results. Using imaginary-time formalism we showed, through
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Partition Function evaluation, that a gas of free Podolsky photons in thermodynamic equi-

librium is mathematically equivalent to a gas formed of non-interacting gases of free Maxwell

photons and free Proca bosons in thermal equilibrium as well. We argue that this result is

only valid for temperatures well bellow the one that corresponds to the electron rest energy.

If the temperature is raised enough, we should take into account fermion pair creation [18].

Of course, this can only be accomplished in Podolsky QED. We also showed that Podolsky

electromagnetism induces a modification in Stefan-Boltzmann Law. Accordingly to Podol-

sky theory at finite temperature, the existing corrections to the Stefan-Boltzmann law vanish

as the Podolsky mass goes to infinity recovering, in this approximation, the original law as

expected. Using experimental data for Stefan-Boltzmann constant and the temperature of

the CMBR we set a thermodynamical limit to the Podolsky parameter. The reason why we

have chosen CMBR temperature is twofold. First of all, CMBR has been called the most

accurate black body radiation. Second, it is a temperature well below that associated with

the electron mass. Therefore, our results are meaningful in that regime. Our analysis have

shown that the Podolsky mass cannot be smaller than approximately 4, 0 meV , otherwise it

would already have been detected in black body radiation experiments. We end this section

stating that Podolsky theory remains as a possible choice for the electromagnetic field and

only further work in both theoretical and experimental research fields will be able either to

confirm it or to rule it out.
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