816 research outputs found

    Which mechanism underlies the water-like anomalies in core-softened potentials?

    Full text link
    Using molecular dynamics simulations we investigate the thermodynamic of particles interacting with a continuous and a discrete versions of a core-softened (CS) intermolecular potential composed by a repulsive shoulder. Dynamic and structural properties are also analyzed by the simulations. We show that in the continuous version of the CS potential the density at constant pressure has a maximum for a certain temperature. Similarly the diffusion constant, DD, at a constant temperature has a maximum at a density ρmax\rho_{\mathrm{max}} and a minimum at a density ρmin<ρmax\rho_{\mathrm{min}}<\rho_{\mathrm{max}}, and structural properties are also anomalous. For the discrete CS potential none of these anomalies are observed. The absence of anomalies in the discrete case and its presence in the continuous CS potential are discussed in the framework of the excess entropy.Comment: 8 page

    Is the Sgr dSph a dark matter dominated system?

    Full text link
    We study the evolution of possible progenitors of Sgr dSph}using several numerical N-body simulations of different dwarf spheroidal galaxies both with and without dark matter, as they orbit the Milky Way. The barionic and dark components of the dwarfs were made obeying a Plummer and NFW potentials of one million particles respectively. The Milky Way was modeled like a tree-component rigid potential and the simulations were performed using a modified Gadget-2 code. We found that none of the simulated galaxies without dark matter reproduced the physical properties observed in Sgr dSph, suggesting that, at the beginning of its evolution, Sgr dSph might have been immersed in a dark matter halo. The simulations of progenitors immersed in dark matter halos suggest that Sgr dSph at its beginning might have been an extended system, i.e. its Plummer radius could have had a value approximated to 1.2 kpc or higher; furthermore, this galaxy could have been immersed in a dark halo with a mass higher than 10^8 solar masses. These results are important for the construction of a model of the formation of Sgr dSph.Comment: 13 pages, 6 figures, New Astronomy - accepte

    Tracing the journey of the sun and the solar siblings through the Milky Way

    Get PDF
      This thesis is focused on studying the motion of the Sun and the Solar siblings through the Galaxy. The Solar siblings are stars that were born with the Sun in the same molecular cloud 4.6 Gyr ago. In the first part of the thesis, we present an efficient method to calculate the evolution of small systems embedded in larger systems. Generalizations of this method are used to calculate the motion of the Sun and the Solar siblings in an analytical potential containing a central bar and spiral arms. By integrating the orbit of the Sun backwards in time, we determine its birth radius and the amount of radial migration experienced by our star. The birth radius of the Sun is used to investigate the evolution and disruption of the Sun's birth cluster. Depending on the Galaxy model parameters, the present-day phase-space distribution of the Solar siblings might be quite different. We used these data to predict the regions in the Galaxy where it will be more likely to search for Solar siblings in the future. Finally, we compute the stellar encounters experienced by the Sun along its orbit and their role on the stability of the outer Solar System.  Gaia Research for European Astronomy Training (GREAT-ITN) networkSterrewacht - OU

    Variation of Bar Strength with Central Velocity Dispersion in Spiral Galaxies

    Full text link
    We investigate the variation of bar strength with central velocity dispersion in a sample of barred spiral galaxies. The bar strength is characterized by QgQ_g, the maximal tangential perturbation associated with the bar, normalized by the mean axisymmetric force. It is derived from the galaxy potentials which are obtained using near-infrared images of the galaxies. However, QgQ_g is sensitive to bulge mass. Hence we also estimated bar strengths from the relative Fourier intensity amplitude (A2A_{2}) of bars in near-infrared images. The central velocity dispersions were obtained from integral field spectroscopy observations of the velocity fields in the centers of these galaxies; it was normalized by the rotation curve amplitude obtained from HI line width for each galaxy. We found a correlation between bar strengths (both QgQ_g and A2A_{2}) and the normalized central velocity dispersions in our sample. This suggests that bars weaken as their central components become kinematically hotter. This may have important implications for the secular evolution of barred galaxies.Comment: To appear in Ap&S

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    An artificial fish swarm filter-based Method for constrained global optimization

    Get PDF
    Ana Maria A.C. Rocha, M. Fernanda P. Costa and Edite M.G.P. Fernandes, An Artificial Fish Swarm Filter-Based Method for Constrained Global Optimization, B. Murgante, O. Gervasi, S. Mirsa, N. Nedjah, A.M. Rocha, D. Taniar, B. Apduhan (Eds.), Lecture Notes in Computer Science, Part III, LNCS 7335, pp. 57–71, Springer, Heidelberg, 2012.An artificial fish swarm algorithm based on a filter methodology for trial solutions acceptance is analyzed for general constrained global optimization problems. The new method uses the filter set concept to accept, at each iteration, a population of trial solutions whenever they improve constraint violation or objective function, relative to the current solutions. The preliminary numerical experiments with a wellknown benchmark set of engineering design problems show the effectiveness of the proposed method.Fundação para a Ciência e a Tecnologia (FCT

    Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage

    Get PDF
    Amazon Basin forest soils contain considerable soil organic carbon stocks; however, the contribution of soil pyrogenic carbon (PyC) to the total is unknown. PyC is derived from local fires (historical and modern) and external inputs via aeolian deposition. To establish an initial estimate of PyC stocks in non-terra preta forest with no known history of fire, to assess site and vertical variability, as well as to determine optimal sampling design, we sampled 37 one hectare forest plots in the Amazon Basin and analysed PyC via hydrogen pyrolysis of three individual samples per plot and of bulked samples to 200 cm depth. Using our data and published total organic carbon stocks, we present the first field-based estimate of total PyC stock for the Amazon Basin of 1.10 Pg over 0–30 cm soil depth, and 2.76 Pg over 0–100 cm soil depth. This is up to 20 times higher than previously assumed. Three individual samples per 1 ha are sufficient to capture the site variability of PyC in our plots. PyC showed significant, large-scale variability among plots. To capture 50% of the PyC in 200 cm soil profiles, soil must be sampled to a depth of at least 71 cm. PyC represents a significant (11%) portion of total organic carbon in soil profiles 0–200 cm depth. This finding highlights the potentially important role that historical fire has played in modifying soil C stocks. Our data suggest that PyC is an important carbon pool for long-term storage, involved in millennial scale biogeochemical cycling, particularly in the subsurface soil

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore