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ABSTRACT

The frequency of Galactic stellar encounters the Solar system experienced depends on the
local density and velocity dispersion along the orbit of the Sun in the Milky Way galaxy.
We aim at determining the effect of the radial migration of the solar orbit on the rate of
stellar encounters. As a first step, we integrate the orbit of the Sun backwards in time in an
analytical potential of the Milky Way. We use the present-day phase-space coordinates of the
Sun, according to the measured uncertainties. The resulting orbits are inserted in an N-body
simulation of the Galaxy, where the stellar velocity dispersion is calculated at each position
along the orbit of the Sun. We compute the rate of Galactic stellar encounters by employing
three different solar orbits — migrating from the inner disc, without any substantial migration
and migrating from the outer disc. We find that the rate for encounters within 4 x 103 au from
the Sun is about 21, 39 and 63 Myr~', respectively. The stronger encounters establish the outer
limit of the so-called parking zone, which is the region in the plane of the orbital eccentricities
and semi-major axes where the planetesimals of the Solar system have been perturbed only
by interactions with stars belonging to the Sun’s birth cluster. We estimate the outer edge
of the parking zone at semimajor axes of 250-1300 au (the outwards and inwards migrating
orbits reaching the smallest and largest values, respectively), which is one order of magnitude
smaller than the determination made by Portegies Zwart & Jilkova. We further discuss the
effect of stellar encounters on the stability of the hypothetical Planet 9.

Key words: Sun: general —planets and satellites: dynamical evolution and stability —solar
neighbourhood.

The trajectory of the Sun in the Galaxy determines the intensity

1 INTRODUCTION of the gravitational tides the Solar system has been exposed to, as

To explain the constant rate of observed new long-period comets,
Oort (1950) suggested that more than 10'! icy bodies orbit the
Sun with aphelia of 5-15 x 10* au, and isotropically distributed
inclinations of their orbital planes. The comets are delivered to
the inner Solar system from the cloud due to perturbation by the
Galactic tide and passing stars (see for example, Rickman 2014 or
Dones et al. 2015 for summaries), and the interstellar medium such
as the giant molecular clouds (e.g. Hut & Tremaine 1985; Brunini
& Fernandez 1996; Jakubik & Neslusan 2009, 2008).

The Galactic tide has a stronger overall effect when averaged
over long time-scales (for example, Heisler & Tremaine 1986). The
effect of the encounters is stochastic and helps to keep the Oort cloud
isotropic (e.g. Kaib, Roskar & Quinn 2011, and references therein).
The two mechanisms act together and combine in a non-linear way
(Rickman et al. 2008; Fouchard et al. 2011).

* E-mail: cmartinez @strw.leidenuniv.nl (CAM-B);
jilkova@strw.leidenuniv.nl (LJ); spz@strw.leidenuniv.nl (SPZ)
1 Both authors contributed equally to this work.

well as the number of stars around the Sun that could pass close
enough to perturb the Oort cloud. Kaib et al. (2011) investigated
the effect of encounters with the field stars and that of the Galactic
tides on the Oort cloud, considering the so-called radial migration
effect on the orbit of the Sun (see e.g. Sellwood & Binney 2002;
Roskar et al. 2008; Minchev & Famaey 2010; Martinez-Barbosa,
Brown & Portegies Zwart 2015, for a more detailed description).
They simulated the Oort cloud around the Sun, adopting possible
solar orbits from the simulation of a Milky Way-like galaxy of
Roskar et al. (2008), including those that experienced no migration
and those that experienced strong radial migration (some of their
solar analogues get as close as 2 kpc from the Galactic Centre or
as far as 13 kpc). Kaib and collaborators found that the present-day
structure of the Oort Cloud strongly depends on the Sun’s orbital
history, in particular, on its minimum past Galactocentric distance.
The inner edge of the Oort cloud shows a similar dependence (on
the orbital history of the Sun) and it is also influenced by the effect
of strong encounters between the Sun and other stars.

With the increasing amount of precise astrometric and radial ve-
locity data for the stars in the solar neighbourhood, several studies
have focused on the identification of stars that passed close to the
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Solar system in the recent past, or will pass close by in the future
(Bailer-Jones 2015; Dybczynski & Berski 2015; Mamajek et al.
2015). Mamajek et al. (2015) identified the star that is currently
known to have made the closest approach to the Sun — the so called
Scholz’s star that passed the Solar system at 0.2570) pc. Addi-
tionally, Feng & Bailer-Jones (2015) studied the effect of recent
and future stellar encounters on the flux of the long-period comets.
They carried out simulations of the Oort cloud, considering pertur-
bations by the identified encounters and a constant Galactic field
at the current solar Galactocentric radius, and kept track of the
flux of long-period comets injected into the inner Solar system as
a consequence of the encounters. Unlike Kaib et al. (2011), Feng
& Bailer-Jones (2015) focused only on the effect of the actually
observed perturbers. They conclude that past encounters in their
sample explain about 5 per cent of the currently observed long-
period comets and they suggest that the Solar system experienced
more strong, as yet unidentified, encounters.

Portegies Zwart & Jilkova (2015) discuss the effect of the stellar
encounter history on the structure of the system of planetesimals
surrounding the Sun. They considered encounters with stars in the
Sun’s birth cluster (early on in the history of the Sun) and encounters
with field stars that occur as the Sun orbits in the Galaxy. The
encounters with the field stars set the outer edge of the so-called
Parking zone of the Solar system (Portegies Zwart & Jilkova 2015).
The parking zone is defined as a region in the plane of semimajor
axis and eccentricity of objects orbiting the Sun that have been
perturbed by the parental star cluster but not by the planets or
the Galactic perturbations. The orbits located in the parking zone
maintain a record of the interaction of the Solar system with stars
belonging to the Sun’s birth cluster. Therefore, these orbits carry
information that can constrain the natal environment of the Sun.
Recently, Jilkova et al. (2015) argued that a population of observed
planetesimals with semimajor axes >150 au and perihelia >30 au
would live in the parking zone of the Solar system. They also found
that such a population might have been captured from a debris disc
of another star during a close flyby that happened in the Sun’s birth
cluster.

The outer edge of the parking zone is defined by the strongest
encounter the Solar system experienced after it left its birth cluster.
The strength of the encounter is measured by the perturbation of
semimajor axes and eccentricity of the bodies in their orbit around
the Sun. Portegies Zwart & Jilkova (2015) used the impulse ap-
proximation (Rickman 1976) to estimate the effect and defined the
outer edge of the Solar system’s parking zone as corresponding to
the perturbation caused by the Scholz’s star (Mamajek et al. 2015).
However, stronger encounters might have happened in the past,
as the Sun orbited in the Galactic disc. These encounters would
alter the outer edge of the Solar system’s parking zone moving it
closer to the Sun. The perturbation strength of the stellar encounters
depends on the characteristics of the close encounters with field
stars — the mass of the other star, its closest approach and relative
velocity. Similar to Scholz’s star, the parameters of some of the
recent close encounters can be derived from the observed data (for
example, Dybczyniski & Berski 2015; Feng & Bailer-Jones 2015).

Estimates of the number and strength of past encounters are dif-
ficult to make because of the large uncertainties in the Galactic
environment where the Sun has been moving since it left its birth
cluster. These uncertainties are due to the unknown evolution of the
Galactic potential (leading to uncertainties in the Sun’s past orbit),
which is, in turn, related to the unknown (population dependent)
density and velocity dispersion of the Milky Way stars along the
Sun’s orbit. Garcia-Sanchez et al. (2001) studied the recent en-

counter history of the Sun by integrating its orbit in an analytical
Milky Way potential together with 595 stars from the Hipparcos
catalogue in order to identify recent and near future encounters.
In addition, they estimated the encounter frequency for the Sun
in its present environment by considering the velocity dispersions
and number densities of different types of stars. Rickman et al.
(2008) simulated the stellar encounters by assuming random en-
counter times (for a fixed number of encounters) over 5 billion yr
and using velocity dispersions for 13 different types of stars (dif-
ferent masses), with relative encounter frequencies for these types
taken from Garcia-Sanchez et al. (2001). An alternative approach
based on a numerical model of the Milky Way was taken by Kaib
et al. (2011). The orbits of solar analogues in this model were ex-
tracted from a simulation of a Milky Way-like galaxy and then the
encounters were simulated by tracking the stellar number density
and velocity dispersion along the orbit and then generating random
encounters by starting stars at random orientations 1 pc from the
Sun. The encounter velocities were generated using the recipe by
Rickman et al. (2008).

In this paper, we aim to improve the determination of the outer
edge of the Solar system’s parking zone by determining the number
of stellar encounters experienced by the Sun along its orbit. We
compute the number of encounters by employing the largest Milky
Way simulation to date, which contains 51 billion particles, divided
over a central bulge, a disc and a dark matter halo (Bédorf et al.
2014). This Galaxy model is used to estimate the velocity dispersion
of the stars encountered by the Sun along its orbit. To achieve this,
we integrate the Sun’s orbit back in time using an analytical potential
for the Milky Way. The orbit of the Sun is then inserted in a snapshot
of the particle simulation and the velocity dispersion of the disc stars
is estimated at each position. We employ three different orbits of the
Sun (no radial migration, migration inwards, migration outwards)
and use the resulting estimates of the encounter frequencies along
each of these orbits to discuss the implications for the location of the
outer edge of the Solar system’s parking zone. We also discuss the
effect of such encounters on the stability of the orbit of the so-called
Planet 9 (P9). The presence of this object was predicted by Batygin
& Brown (2016) in the outer Solar system to explain the clustering
of the orbital elements of the distant Kuiper Belt Objects (KBOs).
According to the updated simulations of Brown & Batygin (2016),
P9 has a mass of 5-20 Mg; an eccentricity of ~0.2-0.8, semimajor
axis of ~500-1050 au and perihelion distance of ~150-350 au.

This paper is organized as follows: in Section 2, we explain the
Galaxy model and we show three possible orbital histories of the
Sun. In Section 3, we determine the number of encounters along
each of these solar orbits. From this estimate, we generate a set
of stellar encounters with random mass, encounter distance and
velocity. In Section 4, we find the stellar encounters that produce the
strongest perturbation of objects orbiting the Sun. These encounters
are used to estimate the outer edge of the Solar system’s parking
zone. In Section 5, we discuss the effects of such encounters on the
stability of the orbit of P9. We also mention the limitations of our
computations and the improvements that could be made in future
studies. In Section 6, we summarize.

2 GALAXY MODEL AND POSSIBLE ORBITAL
HISTORIES OF THE SUN

We use an analytical potential to model the Milky Way. This poten-
tial is used to calculate possible solar orbits. The Galactic poten-
tial contains axisymmetric and non-axisymmetric components. The
axisymmetric part contains a bulge, disc and dark matter halo. The
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Table 1. Modeling parameters of the Milky Way.

Axisymmetric component

Mass of the bulge (M) 141 x 10" Mg
Scalelength bulge (b;) 0.3873 kpc
Disc mass (M) 8.56 x 1010 Mo
Scalelength 1 disc (a2) 5.31 kpc (1)
Scalelength 2 disc (b7) 0.25 kpc
Halo mass (My,) 1.07 x 10" Mg
Scalelength halo (a3) 12 kpe

Central bar
Pattern speed (S2par) 55 kms~ ! kpc~! )
Mass (Mpar) 9.8 x 10° My (C))
Semimajor axis (a) 3.1 kpe 5)
Axis ratio (b/a) 0.37 5)
Vertical axis (¢) 1 kpe (6)
Present-day orientation 20° 3)

Spiral arms

Pattern speed () 25 kms~ ! kpc™! (2)
Number of spiral arms (1) 2 (@)
Amplitude (Agp) 3.9 x 107 Mo kpc_3 4)
Pitch angle (i) 1595 4)
Scalelength (Ryx) 2.6 kpe 7
Scaleheight (H) 0.3 kpc (@)
Present-day orientation 20° 5)

References: (1) Allen & Santillan (1991); (2) Gerhard (2011);
(3) Romero-Gémez et al. (2011); (4) Jilkova et al. (2012);
(5) Martinez-Barbosa et al. (2015); (6) Monari et al. (2014);
(7) Drimmel (2000); (8) Juri¢ et al. (2008).

non-axisymmetric part contains a bar and spiral arms, which rotate
as rigid bodies with different pattern speeds.

Given the configuration of the Galactic potential, we define three
coordinate systems.

(1) An inertial system that is fixed at the centre of the Galaxy,
whose coordinates are denoted by x = (x, y, 2).

(i1) A system that corotates with the bar, whose coordinates are
denoted by X ot = (Xrots Yrots Zrot)- In this frame, the bar is located
along the x-axis. The initial orientation and velocity of this rotating
system correspond to the present-day orientation and pattern speed
of the bar, respectively (see Table 1).

(iii) A system that co-rotates with the spiral arms, whose coordi-
nates are denoted by X o, = (Xrot; > Yrot; » Zror; )- The initial orientation
and velocity of this rotating system correspond to the present-day
orientation and pattern speed of the spiral arms (see Table 1).

The reference systems explained above are shown in Fig. 1 and
we use them to compute the components of the Galactic potential.
The axisymmetric potential is calculated in the inertial frame,
while the potential of the bar and spiral arms are calculated in their
respective co-rotating frames. We, however, compute the orbit
of the Sun in the inertial system. Therefore, we use coordinate
transformations to go from x o Or X, t0 X.

Hereafter, the coordinates r and R represent the spherical and
cylindrical radii. ¢ is the angle measured from the x-axis and in the
direction opposite to the Galactic rotation (i.e. counter-clockwise). z
is the vertical component, perpendicular to the plane of the Galactic
diskdisc.

In Sections 2.1-2.3, we give a detailed description of the axisym-
metric and non-axisymmetric components of the Galactic potential.
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Figure 1. Configuration of the bar and spiral arms of the Galaxy at the
present time. The blue circle marks the current position of the Sun measured
in an inertial system that is fixed at the centre of the Galaxy. The axes Xot
and Yror correspond to a system that co-rotates with the bar. Note that the
spiral arms start at the edges of the bar, therefore the coordinates (Xro(; , Yrot; )
and (Xrot, Yror) Overlap at the present time.

2.1 Axisymmetric component

As mentioned before, the axisymmetric component of the Galaxy
consists of a bulge, disc and a dark matter halo. We model the bulge
of the Milky Way as a Plummer potential (Plummer 1911):

GM,
i+ b2 '
where G corresponds to the gravitational constant, My, is the mass
of the bulge and b is its corresponding scalelength.

The disc of the Milky Way was modelled by using a Miyamoto—

Nagai potential (Miyamoto & Nagai 1975), which is described by
the expression:

O]

q)bulge = -

GMy ’
R+ (@t VIR

Here My corresponds to the mass of the disc. The parameters a,
and b, are constants that modulate its shape. In particular, when
a, = 0, equation (2) represents a spherical distribution of mass. In
the case where b, = 0, equation (2) corresponds to the potential of
a completely flattened disc.

Finally, we model the dark matter halo by means of a logarithmic
potential of the form:

Dgise = —

@

GM(r) GM, 1.02 ron 1'%
Bpato = — - - In(1+R" ,
hal p 102, | Tt n(1+R) .
3
where
hm2.02
M(r) = 71 TR and
r
R=—.
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The parameters in equations (1)—(3) were taken from Allen &
Santillan (1991) and they are listed in Table 1. Although the model
introduced by Allen & Santillan (1991) does not precisely repre-
sent the current estimates of the mass distribution in the Galaxy,
this model has been widely used in studies of orbits of open clus-
ters (Allen, Moreno & Pichardo 2006; Bellini et al. 2010) and in
studies of moving groups in the solar neighbourhood (Antoja et al.
2009, 2011). Moreover, Jilkova et al. (2012) did not find substantial
differences in the orbit of an open cluster when the axisymmet-
ric component is described by a different, more up-to-date model.
Therefore, we do not expect that the modelling of the axisymmet-
ric component of the Galaxy influences the results obtained in this
study.

2.2 Galactic bar

We model the bar of the Galaxy with a three-dimensional Ferrers
potential (Ferrers 1877), which is represented by the following den-
sity:

po (1 —n2)* 1
pbarz{O( n) " .
n>1

“

The quantity n determines the shape of the bar, which is given by the
equation: n> = x2 /a® + y2,/b* + z2,/c*, where the parameters a,
b and c are the semimajor, semiminor and vertical axes of the
bar, respectively. The term p( in equation (4) represents the central
density of the bar and k its concentration. Following Romero-Gémez
etal. (2011), we chose k = 1.

The parameters that describe the bar such as its pattern speed,
mass, orientation and axes are currently under debate (for a complete
discussion, see e.g. Martinez-Barbosa et al. 2015). Hence, we used
values that are within the ranges reported in the literature. These
values are listed in Table 1.

2.3 Spiral arms

The spiral arms are usually represented as periodic perturbations of
the axisymmetric potential. We use the prescription given by Cox
& Goémez (2002), which models such perturbations in the three-
dimensional space. The potential of the spiral arms is given by the
following expression:

TO C’l
@, = —4TG H Ay exp (—VR“) 3 (K - )

z

anrotl i
x cos(ny) {sech (T)} s 5

n

where 1y, is the distance of the star from the Galactic Centre,
measured in the frame co-rotating with the spirals arms. The value
H is the scaleheight, Ay, is the amplitude of the spiral arms and Ry
is the scalelength of the drop-off in density amplitude of the arms.
We use n = 1 term only, with C; = 8/37 and the parameters K,
D, and B, given by

m

K= ——,
Frot, Sin

B = KiH(1 +0.4KH),

D — 1+ K H+03(K H)*
b 1+03K,H ’

where m and i correspond to the number of arms and pitch angle of
the spiral structure, respectively.

Finally, the term y in equation (5) represents the shape of the
spiral structure, which is described by the expression:

_ ln(an/"o)}

V=m{(/’ .
tani

Here ry is a parameter that determines the scalelength of the spiral
arms. Following Jilkova et al. (2012), ry = 5.6 kpc.

As for the bar, the parameters that describe the spiral structure
of the Galaxy are rather uncertain (See e.g. Jilkova et al. 2012;
Martinez-Barbosa et al. 2015). Therefore, we chose the values that
are consistent with the current determination of the spiral structure.
These values are listed in Table 1.

2.4 Solar orbits

We calculate the orbit of the Sun backwards in time using the an-
alytical Galaxy model described previously. In this calculation, we
account for the uncertainty in the present-day Galactocentric phase-
space coordinates of the Sun. We employ the same methodology
as used by Martinez-Barbosa et al. (2015) for this purpose.' Thus,
we select a sample of 5000 random positions and velocities from a
normal distribution centred at the current phase-space coordinates
of the Sun. The normal distribution is then centred at (r), v) with
standard deviations (o) corresponding to the uncertainties in these
coordinates. In an inertial frame that is fixed at the centre of the
Galaxy, the present-day location of the Sun is (see Fig. 1):

ro = (—8.5,0,0.02) kpc and
o, = (0.5, 0, 0.005) kpc,

where the position of the Sun in the plane is given by R = 8.5 kpc.
The present-day velocity of the Sun is

ve = (11.1,12.4 + visg, 7.25) kms™'  and
oy = (1.2,2.1,0.6) kms™",

where v and o, were taken from Schonrich, Binney & Dehnen
(2010) and v sg corresponds to the velocity in the Local Standard of
Rest (LSR). According to the Milky Way model parameters listed
in Table 1, v gg = 226 kms™!.

We integrate the orbit of the Sun backwards in time using each
of the 5000 positions and velocities as initial phase-space coor-
dinates. The solar orbits were computed during 4.6 Gyr by using
a sixth-order integrator called Rotating BRIDGE (Martinez-Barbosa
et al. 2015, Pelupessy et al., in preparation). This integrator is im-
plemented in the aMUSE framework (Pelupessy et al. 2013; Portegies
Zwart et al. 2013).

At the end of the calculation, we obtain a collection of solar orbits,
from which we chose three. These orbits are shown in Fig. 2 and they
represent different orbital histories of the Sun through the Galaxy.
The blue orbit, for instance, shows that the Sun might have been
born at ~11 kpc from the Galactic Centre, suggesting migration
from outer regions of the Galactic disc to R). Martinez-Barbosa
etal. (2015) argued that such a migration could only have happened
if the Sun was influenced by the overlapping of the co-rotation
resonance of the spiral arms with the outer Lindblad resonance of
the bar. On the other hand, the violet orbit shows an example where

! Unlike Martinez-Barbosa et al. (2015), we use a three-dimensional model
for the Galaxy in this study; see Section 2.3.
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Figure 2. Possible trajectories of the Sun under the Galactic parameters
listed in Table 1. # = O Gyr represents the current time.

the Sun migrated from inner parts of the disc to R, in accordance
with Wielen, Fuchs & Dettbarn (1996) and Minchev, Chiappini &
Martig (2013). The yellow orbit represents the case where the Sun
does not migrate on average.

The stellar encounter rate experienced by the Sun during the last
4.6 Gyr depends on the solar orbit, due to differences in the stellar
density and in the local stellar velocity dispersion. Therefore, we
compute the number of stellar encounters in each of the orbits shown
in Fig. 2. The methodology is described in Section 3.

3 GALACTIC STELLAR ENCOUNTERS

The frequency of stellar passages along the orbit of the Sun, f, can be
estimated by the following equation (Garcia-Sanchez et al. 2001):

f:Zf,-ZJTDZZn,'U;. (6)

The index i denotes different stellar types according to the classi-
fication given in Garcia-Sdnchez et al. (2001, table 8). The term
D corresponds to the maximum pericentric distance from the Sun
where a stellar encounter is considered. We set D = 4 x 10° au,
because we do not expect farther encounters to substantially perturb
the Solar system (see e.g. Rickman et al. 2008; Feng & Bailer-Jones
2014). The quantity n; in equation (6) corresponds to the number
density of each stellar type, along the orbit of the Sun. The term v;
is the velocity of the encounter that is described by the expression:

v= ot +97] " )

Here v, corresponds to the Sun’s peculiar velocity relative to the
star belonging to the ith category (we assume that v, is constant
everywhere in the Galaxy). The term v; is the velocity dispersion of
the given stellar type, along the orbit of the Sun.

We obtain r; and v; by using a similar procedure briefly described
in Kaib et al. (2011). In Sections 3.1 and 3.2, we explain this
methodology in more detail.

3.1 Estimation of n;

We obtain the number density of a given stellar type along the orbit
of the Sun, n;, by scaling up or down the number density of that
stellar type at the current solar position, 7;. The number density,
n;, is therefore given by the following expression:

n = pno. ®)

We take the values of n;o from (Garcia-Sdnchez et al. 2001,
table 8). The quantity § is a scaling factor that depends on the
location of the Sun in the Galaxy. We compute B by assuming that
the number densities have the same spatial distribution through the
Galaxy (see e.g. Feng & Bailer-Jones 2014). The scaling factor is
therefore equal to:

g="" )
PO

where p is the local stellar mass density along the Sun’s orbit and

P is the local stellar density at the current Sun’s position. We

compute p and p ) through the Poisson’s equation using the Galaxy

potential described in Section 2. In the calculation of the local stellar

mass density, we do not include the dark matter halo potential.

3.2 Estimation of v;

We obtain the velocity dispersion of a given stellar type along the
Sun’s orbit, v;, by scaling up or down the velocity dispersion of
that stellar type at the current position of the Sun, v, . The velocity
dispersion v; is described by the following expression:

v = av. (10)

The values of v, are taken from Garcia-Sdnchez et al. (2001,
table 8). The scaling factor o depends on the location of the Sun in
the Galaxy and it is given by

a=—-, (11)
YO

where v is the total velocity dispersion at a given location along

the Sun’s orbit and v is the total velocity dispersion at the current

position of the Sun. v is the weighted average of the velocity

dispersions per stellar type (the weights being equal to n;).

We obtain v by using the largest N-body simulation of the Milky
Way, which employs a total number of 51 billion particles (Bédorf
etal. 2014). We did not use the Galactic model described in Section 2
given the complexity in the estimate of v from an analytical Galaxy
model. Although the computation of v by means of a different
Galaxy model is not consistent, we note that the simulations of
Bédorf et al. (2014) have successfully reproduced the stellar velocity
distribution within 500 pc from the Sun (see e.g. fig. 3 in their paper).

We compute v by using the snapshot of the simulation of Bédorf
et al. (2014) corresponding to 5.6 Gyr of evolution. We chose this
snapshot because it corresponds well to the current picture of the
Milky Way. In this snapshot, we discretize the space in bins of
(AR, Ay, A;) = (0.3kpe, 0.261ad, 5 pe), respectively. This choice
ensures a robust estimate of v because of the number of particles
located at each bin. The region in the Galaxy where we determine
vis:0 <R < 15kpc; 0 < ¢ < 2mrad and —200 < z < 200 pec.

The velocity dispersion in the jth bin is given by the following
expression:

Nj

Z [(URk, —tg;)’ + (Vg — 0,)" + (vz,

k=1

Jj N; — 1 - l_)ff)z] ’

12
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Figure 3. Top: stellar velocity dispersion of the Milky Way as a function of
Galactocentric radius and azimuth where 0 < z < 5 pc. Bottom: stellar ve-
locity dispersion as a function of Galactocentric radius and vertical distance
where 0 <6 < 7 /6 rad.

where vg,;, v, and v;,; are the radial, tangential and vertical ve-
locities of the kth star in the jth bin that contains N; stars. Ug;, Uy
and v_; are the mean values of the former velocities, respectively.

In Fig. 3, we show v as a function of the radius and azimuth
(top panel) and as a function of the radius and vertical distance
(bottom panel). As is expected, the velocity dispersion decreases
with radius, due to a reduction of the stellar density in the outer
regions of the Galaxy. At the solar position, we observe that v =~
40 km s~ !, which is in agreement with measurements of the local
velocity dispersion (Nordstrom et al. 2004; Holmberg, Nordstrom
& Andersen 2009).

The velocity dispersion varies periodically with azimuth, being
higher in the inner disc (e.g. top panel, Fig. 3). This variation is a
signature of the presence of the bar that extends up to ~4 kpc from
the Galactic Centre. The variation of v with azimuth is smaller in
outer regions of the disc and it is due to the presence of spiral
arms. From Fig. 3, we also observe that the variation of the velocity
dispersion with the vertical distance z is low compared to the change
with radius or azimuth.

Table 2. Mass ranges (Mepc) corresponding to the mag-
nitude intervals (My) of Garcia-Sanchez et al. (2001).
The mass intervals for types BO-MS5 are based on Pecaut
& Mamajek (2013), Pecaut, Mamajek & Bubar (2012)
and Mamajek 2016), on Kepler et al. (2007) for white
dwarfs (WD) and on Allen (1973) for the giants.

Stellar type My (mag) Mene M)
BO -57 —=02 60 34
A0 —-0.2 1.3 34 2.15
A5 1.3 24 215 1.67
FO 2.4 3.6 1.67 1.25
F5 3.6 40 1.25 1.18
GO 4.0 47 1.18 1.02
G5 4.7 55 1.02 0.9
KO 5.5 64 09 0.78
K5 6.4 8.1 0.78 0.64
MO 8.1 9.9 0.64 0.51
M5 9.9 18.0 0.51 0.082
WD4 - - n=059, o=0.07
Giants - - 2.5 6.3

Notes.“In the case of white dwarfs, the listed numbers ©
and o correspond to the mean and standard deviation of
the Gaussian distribution, respectively.

3.3 Total number of encounters along the Sun’s orbit

Once n; and v; are computed, we can use equation (6) to obtain the
frequency of stellar encounters experienced by the Sun along its
orbit, f. Given that fis a function of time (note that n; and v; change
along the orbit), the total number of stellar encounters experienced
by the Sun along its orbit is

4.5Gyr
Nene = / f@)dr. 13)
1=0

For the solar orbit where the migration is inwards, 71e,. = 9.3 x
10*. For the solar orbit with migration outwards, 7., = 28.2 x 10*.
For the orbit with no net migration, ne,. = 17.5 % 10*. We note that
this last value is similar to that obtained by Rickman et al. (2008)
and Feng & Bailer-Jones (2014) who assumed a non-migrating orbit
for the Sun (they found ne,. = 197 906).

For each of the solar orbits shown in Fig. 2, we generate a sample
of ne,. random stellar encounters. The properties of these encounters
— time of occurrence (fenc), mass (Meyc), pericentre distance (7enc)
and velocity (venc) — are calculated as explained below.

We randomly draw t.,. with a probability that is proportional to
the encounter frequency. Once we determine z.,,., we proceed to the
computation of the mass of the encounters, M.,.. This quantity is
sampled by using the data listed in Garcia-Sanchez et al. (2001,
table 8) that comprise the properties of different stellar types de-
fined by intervals in visible magnitude. First, we determine the ith
stellar type of each encounter according to the number density n;.”
The mass is determined for each encounter as follows. For stellar
types AO-MS5, we define mass ranges corresponding to the mag-
nitude intervals based on Pecaut & Mamajek (2013), Pecaut et al.
(2012) and Mamajek (2016).> We list the magnitude and mass in
Table 2. We pick the individual masses from the mass range of the

2p depends on fenc, since n; is the stellar density measured along the Sun’s
orbit (equation 8).

3We used data compiled by Mamajek (2016) and publicly available
at the web page http://www.pas.rochester.edu/~emamajek/EEM_dwarf_
UBVIJHK _colors_Teff.txt
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corresponding stellar type and with distribution given by Kroupa
(2001)

dN {M—'~3, 0.08 < M <0.5Mp,

— (14)
dm M3, 05 <M <60Mg,

where we chose the maximum mass of 60 M, (the results are not
sensitive to the upper limit since the frequency of BO stars is very
low).

For white dwarfs, we assume a Gaussian distribution with the
mean of 0.59 M, and standard deviation of 0.07 M. We derive
these values as means of the four distributions in table 1 of Kepler
et al. (2007), weighted by fraction of stars in their sub-samples.
Finally, we take the limiting masses for giant stars from Allen
(1973, as the masses of GO and MO giants) and we assume uniform
distribution between 2.5 and 6.3 M.

We generate the distribution of encounter velocities, vepe, by
adopting the same methodology as Feng & Bailer-Jones (2014). The
procedure is as follows. The magnitude of the encounter velocity in
the heliocentric reference frame is

1/2
Voo = v6i+m2_zv®ucosa] . (15)

Here, v, is the solar apex velocity relative to the star of ith category
(note that the stellar category was previously chosen from n;). The
term v; is the velocity of the stellar encounter in the Local Standard
of Rest (LSR). § is the angle between v; and v; in the LSR.

The velocity of the stellar encounter in the LSR is given by the
following equation:

1 1/2

Vi=v | (m+ni+m)| (16)
where the quantities 7n,, 1., 1, are random variables that follow
a Gaussian distribution with zero mean and unit variance. We ob-
tain the distribution of v, in the following way: (i) we randomly
generate cos § from a uniform distribution in the range [—1, 1]. (ii)
Adopting v, from (Garcia-Sénchez et al. 2001, table 8) and com-
puting v; from equation (10), we calculate v; from equation (16) and
Vene Using equation (15). (iii) Since we have to account for the fact
that the contribution to the encounter flux is proportional to vy,
we define a large velocity, vepe = v, + 3v;. (iv) According to the
stellar category, we randomly draw a velocity v;4,g from a uniform
distribution over [0, venc]. If Vpang < Venc, We accept veye and the
generated values of cos §, v;. Otherwise, we reject it and repeat the
process until vVyng < Vene-

Finally, we sample the distances of the stellar encounter, ey,
from a distribution function proportional to 7., With an upper limit
of 4 x 10° au, in the same fashion as Feng & Bailer-Jones (2014).

For each of the three studied orbits, we calculated and com-
bined 1000 different sets of encounters (realized by different random
seeds) following the method described above. In Fig. 4, we show
the distributions of the encounters averaged over the total number of
sets (1000) in two-dimensional projections of the space of Mepc, Venc
and rep.. Note that the distributions do not differ dramatically with
migration. As expected from the assumed distributions, most of the
encounters are with low-mass stars (M, < 1 M) and velocities
of ~20-100 km s~'.

From the large set of stellar encounters obtained, we can look for
those that produce the strongest perturbation in the outer regions of
the Solar system. These stellar encounters will set the outer edge
of the parking zone. Portegies Zwart & Jilkova (2015) used the
encounter with Scholz’s star to determine the location of the outer
edge of the Solar system’s parking zone and they found that the ef-

10%F migration inwards
no migration
- —— migration outwards
~
= 10!
£ 10|
§
>
100+
10t
; 10%
1071k
0% 100 10t 10° 10° 10! 102

Tenc [AU] Venc [km/a]

Figure 4. Number of encounters as a function of the mass My, velocity
Vene and pericentre reqe of the encountering star along the three studied orbits.
The number of encounters, nenc, is averaged over the number of generated
sets (1000, see the text). In each subplot, three contours (nepe = l()’z, l()o,
102 per bin) of different two-dimensional distributions are shown. The axes
are logarithmic and ey is not normalized by the size of the bin. Hence, the
plot serves for the comparison between the three different orbits.

fect of this particular encounter has hardly perturbed the Oort cloud
down to a distance of 10° au. If the Sun experienced stronger stel-
lar encounters, the perturbations might become important at smaller
semimajor axes, shifting inwards the outer edge of the parking zone.
In the next section, we determine the strongest stellar encounters
experienced by the Sun and we make a new estimate of the location
of the outer edge of the Solar system’s parking zone.

4 THE OUTER LIMIT OF THE PARKING ZONE

We estimate the outer limit of the parking zone using the impulse
approximation (Rickman 1976). The impulse approximation as-
sumes that the velocity vector of the perturbing star, ve,., and the
position vector of the perturbed body orbiting the Sun are constant
during the encounter. This corresponds to the assumption that the
time-scale of the encounter is much longer than the orbital period
of the perturbed body. Following Portegies Zwart & Jilkova (2015),
we further assume that the point of the closest approach of the star
lies on the line joining the Sun and the perturbed body (that is, the
velocity of the perturbing star, vey, is perpendicular to the position
vector of the perturbed body), which is the geometry resulting in the
maximal perturbation. Finally, we assume that the perturbed body
is at the aphelion of its orbit where it is moving the slowest.

The impulse gained by a perturbed body moving on an orbit with
semimajor axis a and eccentricity e then is

2GM.e a(l+e)

Al = . )
Venclenc Venc — a(l + 6)

Note that in the case of a distant encounter, when re,. > a(l + e),
the impulse given in equation (17) at given distance from the
Sun is proportional to M./ (vencrfnc). Feng & Bailer-Jones (2015)
used this expression as a proxy for the strength of the encounters
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Figure 5. Cumulative distributions of the outer limit of the parking zone
for circular orbits apz(e = 0). The three orbits with different migration are
shown. The distributions are derived using 1000 different encounter sets
(corresponding to different random seeds) and the number of encounters,
Nenc, 1s averaged over these number of sets. The maximal value of apz(e = 0)
is given by the upper limit of the encounter pericentre of D = 4 x 10° au
(Section 3). The maximal value of neqe corresponds to the total number of
encounters along the orbits. The horizontal lines indicate ne,e = 0.1, 1 and
10. Both horizontal and vertical axes are logarithmic.

(as measured by the number of injected long-period comets). We
define the outer limit of the parking zone where the perturbation
corresponds to the body’s velocity at aphelion (Portegies Zwart &
Jilkova 2015), that is

GMgp 1—e
Al = s (18)
a l+e

where the mass of the Sun is M = 1 M. From equations (17)
and (18), we can find the semimajor axis of the outer limit of the
parking zone as a function of eccentricity, apz(e).

In Fig. 5, we compare cumulative distributions of the outer limit
of the parking zone of a circular orbit, or apz(e = 0), for encounters
along each of the studied orbits. To obtain the distributions, we
generated 1000 different sets of encounters for each solar orbit
and calculated their apz(e = 0). The distributions in Fig. 5 are
averaged over the number of encounter sets and 7y, is the number
of encounters per orbit.

The impulse approximation is based on the assumption that the
time-scale of the encounter is much shorter than the orbital period
of the perturbed body. To verify the validity of this assumption, we
compare the period Ppz(e = 0) of the circular orbits with semimajor
axes of apz(e = 0) with the time-scales of the encounters taken as
fenc = Tenc/Venc- The distributions of the ratio Ppz(e = 0)/te, are
shown in Fig. 6 by full lines. We found that for the vast majority of
the encounters (more than 99 per cent), the ratio is higher than 100
and the assumption is well fulfilled. There is only a very small num-
ber of encounters (less than few dozen in the combined encounter
sets, translating into 7¢, ~ 2 x 1072 per orbit in Fig. 5), typically
close (Fene < 100 au) and slow (Vene < 10 km s™!), for which Ppy(e
=0)/tene < 10. Given that there is less than 1 per cent of encounters
with Ppz(e = 0)/tene < 50, we neglect the inaccuracy of the impulse
approximation for these cases.

The outer limit of the parking zone for higher eccentricities
reaches smaller semimajor axes (apz decreases with eccentricity)

10° . T T T T
migration inwards
10*F no migration R 1
—— migration outwards
103 —  Ppy(e=0) ]
----- sz(c = 099)
102 :
£ 10 ]
100k E
1071 E
1072} .
103 L L L i

10° 10! 10 103 101
PPZ(S = 0)/tcnc-, Pl"Z(8 = 0-99)/tcnc

Figure 6. Distributions of the ratio of the period of a circular orbit of
semimajor axis apz for circular and eccentric (e = 0.99) orbits, Ppz(e = 0)
and Ppz(e = 0.99), and the time-scale f,c of the corresponding encounter.
The three different orbits are shown by different colours. Full and dotted lines
correspond to circular and eccentric orbits, respectively. The distributions
are derived for the same combined encounter sets as in Fig. 5. Note that both
horizontal and vertical axes are logarithmic.

than for the circular orbits. The dotted lines in Fig. 6 show the
distributions of the ratio Ppz(e = 0.99)/f.,c for the three different
orbits. Note that the distributions are shifted to lower values com-
pared to Ppz(e = 0)/ten (full lines). For an eccentricity of e = 0.99,
we found that there is about 17 per cent of encounters with Ppz(e =
0.99)/tene < 50. The overall fraction of encounters with Ppy(e
= 0.99)/tnc < 50, however, is still relatively small, typically of
the order of 10~* out of the total number of encounters. More
accurate approximations (Dybczynski 1994; Rickman et al. 2005)
can be used to remedy this inaccuracy, but here we stick to the
impulse approximation.

We determine the actual outer edge of the Solar system’s parking
zone such that the number of encounters along the orbit resulting
in smaller apz(e = 0) is ne,. = 1. These values are marked by the
horizontal full grey line in Fig. 5. We obtain apz(e = 0) & 1280, 940
and 690 au for the orbit with inwards migration, no migration and
outwards migration, respectively. In Fig. 7, we show the resulting
Solar system’s parking zone. We list the parameters of the encoun-
ters used to calculate the outer edge of the parking zone in Table 3.
These encounters were determined from the cumulative distribution
of the number of encounters (Fig. 5) where we picked the encoun-
ters with the smallest apz(e = 0) of the first bin with n.,. > 1. Note
that these are example encounters and different combinations of pa-
rameters result in the same apy(¢ = 0) and parking zone’s outer limit
in the plane e x a. For fixed semimajor axis a and eccentricity e, the
parameters of the encounters resulting in the same change of im-
pulse are bound as My /[VencFenc(Fene — @)] = const. (equation 17).
We use the following parameters to draw the outer edge of the Solar
system’s parking zone: a = apz(e = 0); € = 0; Menc /[VencFenc (Fene —
apz)] = 7.9, 6.7 and 2.2 x 1073 Mgp au—2km~'s. The encounters
with Mepe, Vene and repe that give these values will result in the same
outer limit of the parking zone.

The solid black line in Fig. 7 corresponds to the original esti-
mate made by Portegies Zwart & Jilkova (2015) using the Scholz’s
star. The outer edge of the parking zone given by the encounters
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Figure 7. Solar system’s parking zone in the plane of eccentricity e and
semimajor axis a. Its inner limit is defined by the perturbations by Neptune
and indicated by dashed black line. The blue, yellow and purple lines show
its outer limit for solar orbits with different migration (see Fig. 2 and Table 3).
The black line is the estimate of the outer limit using Scholz’s star (Portegies
Zwart & Jilkova 2015). The two bullet points indicate the orbital elements
of the inner Oort cloud bodies Sedna (Brown, Trujillo & Rabinowitz 2004)
and 2012VP;3 (Trujillo & Sheppard 2014). The hashed triangle shows
the orbital elements constrains for Planet 9 (Brown & Batygin 2016); see
Section 5 for discussion.

Table 3. Stellar encounters used for the parking zone’s outer limit
in Fig. 7.

Orbit Menc (M@) Tenc (au) Vene (km S_])
Migration inwards 0.11 1285 38.5
No migration 0.13 948 30.4
Migration outwards 0.43 721 21.4

derived here is located in the region corresponding to the inner Oort
cloud, where objects like Sedna (Brown et al. 2004) and 2012VP 3
(Trujillo & Sheppard 2014) reside. The orbit migrating outwards
from the denser inner regions of the Galaxy (violet line in Figs 2 and
7) results in the smallest parking zone. The orbit migrating inwards
from the less dense outer regions (blue line in Figs 2 and 7) results
in a parking zone that would not perturb the objects on Sedna-
like orbits. This picture is consistent with Kaib et al. (2011) who
concluded that the inner edge of the classical Oort cloud strongly
depends on the orbit of the Sun, being smaller for the orbits that
moved closer to the Galactic centre.

5 DISCUSSION

5.1 Effect of stellar encounters on the hypothetical P9

In order to explain some of the observed characteristics of distant
KBOs or inner Oort cloud bodies, there has been ongoing discus-
sion on an undiscovered planet in the outer Solar system (for exam-
ple, Whitmire & Matese 1985; Matese & Whitmire 1986; Murray
1999; Horner & Evans 2002; Melita et al. 2004; Gomes, Matese &
Lissauer 2006; Lykawka & Mukai 2008; Gomes, Soares & Brasser
2015 and others). The most recent prediction in this context was
made by Batygin & Brown (2016) who showed that the presence

of a distant planet — so-called P9 — can explain the observed orbital
alignment of some KBOs and inner Oort cloud objects.

Brown & Batygin (2016) further constrained P9 to be of 5-
20 Mg with an eccentricity of ~0.2-0.8, semimajor axis of ~500—
1050 au (perihelion distance of ~150-350 au) and inclination about
30°. The semimajor axes and eccentricities constrained for P9 are
depicted in Fig. 7 and they overlap with the region of the outer
edges of the Solar system’s parking zone. This means that there
was at least one encounter along the solar orbit that could have
changed the aphelion velocity of P9 by 100 per cent. For such
perturbation of P9, the encounter needs to have the appropriate
geometry (where the encounter and P9’s orbit are in the same plane).
The outer limit of the parking zone serves as an estimate of the level
to which a population of bodies orbiting in the Solar system was
perturbed; that is, the concept of the parking zone assumes that
there will be bodies on orbits with certain geometry with respect to
the encounter plane. As a consequence, if a single body is orbiting
at, or is close to the parking zone (such as P9), the probability of
a perturbation occurring is given by the probability to obtain the
appropriate geometry of the stellar encounter.

In this context, Li & Adams (2016) estimated the probability for
the ejection of P9 from its current orbit by field stars. Using a large
ensemble of simulations with Monte Carlo sampling, they first cal-
culated the cross-section for the ejection and then integrated these
along the solar orbit, assuming a constant number stellar density of
0.1 pc~3 and a velocity dispersion of 40 km s~! for 4.6 Gyr. They
estimate the probability of ejecting P9 due to a passing field star to
be <3 per cent. Note that while Li & Adams (2016) considered an
isotropic distribution of the direction of the encounters approach,
Feng & Bailer-Jones (2014) find the distribution non-isotropic (en-
counters in the direction of the solar antapex are more common).

The existence of P9 is important to establish the existence of
the parking zone of the Solar system. In Fig. 7, we show that the
inner edge of the parking zone is delimited by Neptune’s perturbing
distance (dashed black line). If P9 really exists, the inner edge of
the parking zone would be now delimited by its orbital parameters.
This means that the inner edge of the parking zone would be shifted
towards larger semimajor axes, at ~10° au. In this case, the Solar
system’s parking zone would not exist.

5.2 Limitations in the computation of stellar encounters

We computed the Galactic stellar encounters in a more complete
fashion than in Portegies Zwart & Jilkova (2015). However, we note
that our approach has limitations. First, we use different Galaxy
models to compute the local stellar density and the velocity dis-
persion along the orbit of the Sun. This is inconsistent, because the
local density and the stellar velocity dispersion might be different in
the two Galaxy models used, even when these models might repro-
duce the observed properties of the Milky Way locally. Secondly,
since we used only one snapshot from the N-body Galaxy model,
the velocity dispersion along the orbit of the Sun does not evolve
with time.

The estimate of the stellar encounters can be improved by com-
puting in a consistent manner the local stellar density and the ve-
locity dispersion along the orbit of the Sun. This can be achieved
by using either the analytical or the N-body Galaxy model. In the
analytical Galaxy model, the velocity dispersion can be derived by
solving the Jeans equations. In this way, the temporal evolution of
the velocity dispersion along the orbit of the Sun is also taken into
account. However, several assumptions have to be made in order to
obtain an uncomplicated solution for v(z, x, y, z). For instance, it
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is necessary to assume an initial velocity dispersion profile and the
velocity ellipsoid aligned with the R- and z-axes. (Monari, Antoja
& Helmi 2013, Section 2.3).

In the N-body Galaxy model, on the other hand, it is necessary
to integrate the orbit of the Sun and to compute p(t, x, y, z) and
v(t, x, y, z) using this model to make a consistent determination
of 7nene. To account for the temporal evolution of p and v, such
calculations must include enough snapshots obtained from the N-
body simulation. This procedure, however, is not easy to execute
given the complexity at handling the huge amount of data provided
by each snapshot in the simulation.

The improvements mentioned above require further work and are
outside the scope of this paper. The computation of the encounter
probability by using either of the two methods is left for a future
work.

6 SUMMARY AND CONCLUSIONS

We estimate the number of Galactic stellar encounters the Sun may
have experienced in the past along its orbit through the Galaxy. We
aim to improve the previous estimates of the outer edge of the Solar
system’s parking zone made by Portegies Zwart & Jilkova (2015).
The parking zone is the region in the plane of the eccentricity and
semimajor axis where objects orbiting the Sun have been perturbed
by stars belonging to the Sun’s birth cluster but not by the planets or
by Galactic perturbations. As a consequence, the orbits of objects
located in the parking zone maintain a record of the interaction of
the Solar system with the so-called solar siblings (Portegies Zwart
2009). These orbits carry information that can constrain the natal
environment of the Sun.

We investigate the orbital history of the Sun by using an analyti-
cal potential containing a bar and spiral arms to model the Galaxy.
In this potential, we integrate the orbit of the Sun back in time dur-
ing 4.6 Gyr. Since we include the uncertainties in the present-day
phase-space coordinates of the Sun, we obtain a collection of possi-
ble orbital histories. Here we study three different orbits, depending
on the migration experienced by the Sun, namely: migration in-
wards, no migration and migration outwards. The Galactic stellar
encounters are estimated for each of these orbits.

We compute the number of stellar encounters (7.,.) by calculat-
ing the frequency of stellar passages experienced by the Sun along
its orbit. This frequency is determined by computing the number
density and the stellar velocity dispersion along the orbit of the Sun.
We found that e, = 9.3 x 10, 28.2 x 10* and 17.5 x 10* for
the orbits with inwards migration, outwards migration and no mi-
gration, respectively. We use these estimates to generate a sample
of ne, random stellar encounters with certain time of occurrence
(fenc), mass (Mey), pericentre distance (7enc) and velocity (venc). By
looking at the distribution of stellar encounters in the space of My,
Vene and re,, we found that most of the stellar encounters experi-
enced by the Sun have been with low-mass stars (M, < 1 M)
with velocities of 20—100 km s~!.

We calculate the outer edge of the Solar system’s parking zone
using the impulse approximation (Rickman 1976). For each solar
orbit, we calculate the outer edge for 1000 different sets of encoun-
ters. The actual outer edge of the Solar system’s parking zone is
determined such that the number of encounters along the orbit re-
sulting in smaller apz(e) is nene = 1. The parking zone is then located
at about 250-700, 450-950 and 600-1300 au (Fig. 7) for the or-
bits with migration outwards, no migration and migration inwards,
respectively.

Therefore, the orbital history of the Sun is important to
establish the outer edge of the parking zone. From Fig. 7, it is
also clear that the Sun has experienced stronger stellar encounters
than those with the Scholz’s star. As a consequence, the location
of the outer edge of the parking zone is closer to the Sun than the
previous estimates made by Portegies Zwart & Jilkova (2015) and
is comparable to the border between the inner and outer Oort cloud.
Regardless of the migration of the solar orbit, we find that objects
in the Solar system with semimajor axis smaller than about 200 au
have not been perturbed by encounters with field stars. However,
depending on the migration of the solar orbit, it is possible that the
inner Oort cloud (including Sedna) has been perturbed.

We further discuss the effect of the stellar encounters on the
stability of the orbit of a hypothetical P9. According to the orbital
parameters of P9, this object is located in the same region as the
outer edge of the parking zone. This means that there was at least
one encounter along the solar orbit that could have changed the
aphelion velocity of P9 by 100 per cent.
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