640 research outputs found

    Estudio cualitativo sobre los significados de la Medicina Complementaria y Alternativa para el cáncer en estudiantes de Ciencias de la Salud

    Get PDF
    Social representations (SR) have always been a fundamental concept for psychology (Moscovici, 1973). This qualitative study uses the concept of SR, applied to the Health's field; the aim is to analyze the SR of Complementary and Alternative Medicine (CAM) for cancer in students of Health Sciences, using the methodology of thematic analysis. Results indicate that the SR of CAM have been developed based on many different elements, but where prevails an objectification and anchoring of CAM on what is common and familiar, rather than based on scientific knowledge. This to reflect on the training of future professionals and their practices in curing cancer. © 2018 Pontificia Universidad Javeriana.Las representaciones sociales (RS) han sido desde siempre un concepto fundamental para la psicología (Moscovici, 1973). El presente estudio cualitativo utiliza el concepto de RS aplicado al campo de la Salud, con el objetivo de analizar las RS de la Medicina Complementaria y Alternativa (MCA) para el cáncer, en estudiantes de Ciencias de la Salud, utilizando el análisis temático. Los resultados indican que las RS de la MCA se han elaborado con base en elementos muy diversos, pero donde prevale una objetivación y un anclaje de la MCA en lo que es común y familiar, más que en el conocimiento científico. Lo anterior para reflexionar sobre la formación de los futuros profesionales y sus prácticas en la cura del cáncer. © 2018 Pontificia Universidad Javeriana

    Minimal archi-texture for neutrino mass matrices

    Full text link
    The origin of the observed masses and mixing angles of quarks and leptons is one of imperative subjects in and beyond the standard model. Toward a deeper understanding of flavor structure, we investigate in this paper the minimality of fermion mass (Yukawa) matrices in unified theory. That is, the simplest matrix form is explored in light of the current experimental data for quarks and leptons, including the recent measurements of quark CP violation and neutrino oscillations. Two types of neutrino mass schemes are particularly analyzed; (i) Majorana masses of left-handed neutrinos with unspecified mechanism and (ii) Dirac and Majorana masses introducing three right-handed neutrinos. As a result, new classes of neutrino mass matrices are found to be consistent to the low-energy experimental data and high-energy unification hypothesis. For distinctive phenomenological implications of the minimal fermion mass textures, we discuss flavor-violating decay of charged leptons, the baryon asymmetry of the universe via thermal leptogenesis, neutrino-less double beta decay, and low-energy leptonic CP violation.Comment: 37 pages, 6 figure

    Folded Supersymmetry and the LEP Paradox

    Full text link
    We present a new class of models that stabilize the weak scale against radiative corrections up to scales of order 5 TeV without large corrections to precision electroweak observables. In these `folded supersymmetric' theories the one loop quadratic divergences of the Standard Model Higgs field are cancelled by opposite spin partners, but the gauge quantum numbers of these new particles are in general different from those of the conventional superpartners. This class of models is built around the correspondence that exists in the large N limit between the correlation functions of supersymmetric theories and those of their non-supersymmetric orbifold daughters. By identifying the mechanism which underlies the cancellation of one loop quadratic divergences in these theories, we are able to construct simple extensions of the Standard Model which are radiatively stable at one loop. Ultraviolet completions of these theories can be obtained by imposing suitable boundary conditions on an appropriate supersymmetric higher dimensional theory compactified down to four dimensions. We construct a specific model based on these ideas which stabilizes the weak scale up to about 20 TeV and where the states which cancel the top loop are scalars not charged under Standard Model color. Its collider signatures are distinct from conventional supersymmetric theories and include characteristic events with hard leptons and missing energy.Comment: 18 pages, 5 figures, references correcte

    Plantar pain is not always fasciitis

    Get PDF
    The case is described of a patient with chronic plantar pain, diagnosed as fasciitis, which was not improved by conventional treatment. Magnetic resonance imaging revealed flexor hallucis longus tenosynovitis, which improved after local glucocorticoid injection

    Top quark effects in composite vector pair production at the LHC

    Full text link
    In the context of a strongly coupled Electroweak Symmetry Breaking, composite light scalar singlet and composite triplet of heavy vectors may arise from an unspecified strong dynamics and the interactions among themselves and with the Standard Model gauge bosons and fermions can be described by a SU(2)L×SU(2)R/SU(2)L+RSU(2)_L\times SU(2)_R/SU(2)_{L+R} Effective Chiral Lagrangian. In this framework, the production of the V+VV^{+}V^{-} and V0V0V^{0}V^{0} final states at the LHC by gluon fusion mechanism is studied in the region of parameter space consistent with the unitarity constraints in the elastic channel of longitudinal gauge boson scattering and in the inelastic scattering of two longitudinal Standard Model gauge bosons into Standard Model fermions pairs. The expected rates of same-sign di-lepton and tri-lepton events from the decay of the V0V0V^{0}V^{0} final state are computed and their corresponding backgrounds are estimated. It is of remarkable relevance that the V0V0V^{0}V^{0} final state can only be produced at the LHC via gluon fusion mechanism since this state is absent in the Drell-Yan process. It is also found that the V+VV^{+}V^{-} final state production cross section via gluon fusion mechanism is comparable with the V+VV^{+}V^{-} Drell-Yan production cross section. The comparison of the V0V0V^{0}V^{0} and V+VV^{+}V^{-} total cross sections will be crucial for distinguishing the different models since the vector pair production is sensitive to many couplings. This will also be useful to determine if the heavy vectors are only composite vectors or are gauge vectors of a spontaneously broken gauge symmetry.Comment: 18 pages, 5 tables, 6 figures. Missing figures added. Matches published versio

    Extra Dimensions at the Weak Scale and Deviations from Newtonian Gravity

    Get PDF
    We consider theories in which the Standard Model gauge fields propagate in extra dimensions whose size is around the electroweak scale. The Standard Model quarks and leptons may either be localized to a brane or propagate in the bulk. This class of theories includes models of Scherk-Schwarz supersymmetry breaking and universal extra dimensions. We consider the problem of stabilizing the volume of the extra dimensions. We find that for a large class of stabilization mechanisms the field which corresponds to fluctuations of the volume remains light even after stabilization, and has a mass in the 10310^{-3} eV range. In particular this is the case if stabilization does not involve dynamics at scales larger than the cutoff of the higher dimensional Standard Model, and if the effective theory below the compactification scale is four dimensional. The mass of this field is protected against large radiative corrections by the general covariance of the higher dimensional theory and by the weakness of its couplings, which are Planck suppressed. Its couplings to matter mediate forces whose strength is comparable to that of gravity and which can give rise to potentially observable deviations from Newton's Law at sub-millimeter distances. Current experiments investigating short distance gravity can probe extra dimensions too small to be accessible to current collider experiments. In particular for a single extra dimension stabilized by the Casimir energy of the Standard Model fields compactification radii as small as 5 inverse TeV are accessible to current sub-millimeter gravity experiments.Comment: Minor corrections, conclusions unchanged. References adde

    Third-generation leptoquark decays and collider searches

    Get PDF
    Collider searches for first-, second-, and third-generation scalar (S) or vector (V) leptoquarks (LQs) focus on the quark-lepton decay modes S,V -> q l. For SU(2)-doublet and -triplet leptoquarks with a sufficiently large splitting between the components, decays involving real W-boson emission (such as S_2^{(+5/3)} -> S_2^{(+2/3)} W^{+} and others) become possible and can change the patterns of leptoquark decays. For third-generation leptoquarks, where these mass splittings might be large, such modes could dominate certain leptoquark decays as they are (if kinematically allowed) guaranteed to be of order g^2 where g is the electroweak coupling. We calculate the decay rates for all such processes involving SU(2)-doublet and triplet, scalar and vector leptoquarks. Standard limits on mass splittings from precision electroweak measurements imply that only such decays involving SU(2)-doublet scalar LQs are likely kinematically possible.Comment: 13 pages, LaTeX, 2 separate postscript figure

    Neutralino properties in the light of a further indication of an annual modulation effect in WIMP direct search

    Get PDF
    We demonstrate that the further indication of a possible annual modulation effect, singled out by the DAMA/NaI experiment for WIMP direct detection, is widely compatible with an interpretation in terms of a relic neutralino as the major component of dark matter in the Universe. We discuss the supersymmetric features of this neutralino in the Minimal Supersymmetric extension of the Standard Model (MSSM) and their implications for searches at accelerators.Comment: 15 pages, ReVTeX, 9 figures (included as PS files

    R--Parity Violating Signals for Chargino Production at LEP II

    Get PDF
    We study chargino pair production at LEP II in supersymmetric models with spontaneously broken R-parity. We perform signal and background analyses, showing that a large region of the parameter space of these models can be probed through chargino searches at LEP II. In particular, we determine the attainable limits on the chargino mass as a function of the magnitude of the effective bilinear R-parity violation parameter ϵ\epsilon, demonstrating that LEP II is able to unravel the existence of charginos with masses almost up to its kinematical limit even in the case of R-parity violation. This requires the study of several final state topologies since the usual MSSM chargino signature is recovered as ϵ0\epsilon \to 0. Moreover, for sufficiently large ϵ\epsilon values, for which the chargino decay mode χ±τ±J\chi^\pm \to \tau^\pm J dominates, we find through a dedicated Monte Carlo analysis that the χ±\chi^\pm mass bounds are again very close to the kinematic limit. Our results establish the robustness of the chargino mass limit, in the sense that it is basically model-independent. They also show that LEP II can establish the existence of spontaneous R-parity violation in a large region of parameter space should charginos be produced.Comment: improved analyses; 31 pages and 9 figures (included
    corecore