93 research outputs found

    A thyroid hormone regulated asymmetric responsive centre is correlated with eye migration during flatfish metamorphosis

    Get PDF
    Flatfish metamorphosis is a unique post-embryonic developmental event in which thyroid hormones (THs) drive the development of symmetric pelagic larva into asymmetric benthic juveniles. One of the eyes migrates to join the other eye on the opposite side of the head. Developmental mechanisms at the basis of the acquisition of flatfish anatomical asymmetry remain an open question. Here we demonstrate that an TH responsive asymmetric centre, determined by deiodinase 2 expression, ventrally juxtaposed to the migrating eye in sole (Solea senegalensis) correlates with asymmetric cranial ossification that in turn drives eye migration. Besides skin pigmentation that is asymmetric between dorsal and ventral sides, only the most anterior head region delimited by the eyes becomes asymmetric whereas the remainder of the head and organs therein stay symmetric. Sub-ocular ossification is common to all flatfish analysed to date, so we propose that this newly discovered mechanism is universal and is associated with eye migration in all flatfish.Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/66808/2009, IF/01274/2014]; FCT [SFRH/BPD/79105/2011, SFRH/BPD/89889/2012, PTDC/MAR/115005/2009, PEst-C/MAR/LA0015/2011, UID/Multi/04326/2013, Pest-OE/EQB/LA0023/2013, UID/BIM/04773/2013]; European Regional Development Fund through COMPETE; INIA; EU [RTA2013-00023-C02-01

    Demographic Diversity and Sustainable Fisheries

    Get PDF
    Fish species are diverse. For example, some exhibit early maturation while others delay maturation, some adopt semelparous reproductive strategies while others are iteroparous, and some are long-lived and others short-lived. The diversity is likely to have profound effects on fish population dynamics, which in turn has implications for fisheries management. In this study, a simple density-dependent stage-structured population model was used to investigate the effect of life history traits on sustainable yield, population resilience, and the coefficient of variation (CV) of the adult abundance. The study showed that semelparous fish can produce very high sustainable yields, near or above 50% of the carrying capacity, whereas long-lived iteroparous fish can produce very low sustainable yields, which are often much less than 10% of the carrying capacity. The difference is not because of different levels of sustainable fishing mortality rate, but because of difference in the sensitivity of the equilibrium abundance to fishing mortality. On the other hand, the resilience of fish stocks increases from delayed maturation to early maturation strategies but remains almost unchanged from semelparous to long-lived iteroparous. The CV of the adult abundance increases with increased fishing mortality, not because more individuals are recruited into the adult stage (as previous speculated), but because the mean abundance is more sensitive to fishing mortality than its standard deviation. The magnitudes of these effects vary depending on the life history strategies of the fish species involved. It is evident that any past high yield of long-lived iteroparous fish is a transient yield level, and future commercial fisheries should focus more on fish that are short-lived (including semelparous species) with high compensatory capacity

    Gene expression throughout a vertebrate's embryogenesis

    Get PDF
    Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development

    The population biology of the living coelacanth studied over 21 years

    Get PDF
    Between 1986 and 2009 nine submersible and remote-operated vehicle expeditions were carried out to study the population biology of the coelacanth Latimeria chalumnae in the Comoro Islands, located in the western Indian Ocean. Latimeria live in large overlapping home ranges that can be occupied for as long as 21 years. Most individuals are confined to relatively small home ranges, resting in the same caves during the day. One hundred and forty five coelacanths are individually known, and we estimate the total population size of Grande Comore as approximately 300–400 adult individuals. The local population inhabiting a census area along an 8-km section of coastline remained stable for at least 18 years. Using LASER-assisted observations, we recorded length frequencies between 100 and 200 cm total length and did not encounter smaller-bodied individuals (\100 cm total length). It appears that coelacanth recruitment in the observation areas occur mainly by immigrating adults. We estimate that the mean numbers of deaths and newcomers are 3–4 individuals per year, suggesting that longevity may exceed 100 years. The domestic fishery represents a threat to the long-term survival of coelacanths in the study area. Recent changes in the local fishery include a decrease in the abundance of the un-motorized canoes associated with exploitation of coelacanths and an increase in motorized canoes. Exploitation rates have fallen in recent years, and by 2000, had fallen to lowest ever reported. Finally, future fishery developments are discussed

    Reproductive success of nuclear nonhybrid males of Squalius alburnoides hybridogenetic complex (Teleostei, Cyprinidae): An example of interplay between female choice and ecological pressures?

    Get PDF
    The hybridogenetic fish complex Squalius alburnoides comprises diploid males with non-hybrid nuclear genomes and several hybrid forms varying in ploidy and relative proportions of the parental genomes. In this paper, we present evidence that in captivity females prefer to mate with non-hybrid males. We suggest that female choice combined with different ecological requirements of hybrid and non-hybrid males may explain the extreme variation in the relative abundance of male types among drainages

    Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    Get PDF
    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish

    Longitudinal river zonation in the tropics: examples of fish and caddisflies from endorheic Awash river, Ethiopia

    Get PDF
    Primary Research PaperSpecific concepts of fluvial ecology are well studied in riverine ecosystems of the temperate zone but poorly investigated in the Afrotropical region. Hence, we examined the longitudinal zonation of fish and adult caddisfly (Trichoptera) assemblages in the endorheic Awash River (1,250 km in length), Ethiopia. We expected that species assemblages are structured along environmental gradients, reflecting the pattern of large-scale freshwater ecoregions. We applied multivariate statistical methods to test for differences in spatial species assemblage structure and identified characteristic taxa of the observed biocoenoses by indicator species analyses. Fish and caddisfly assemblages were clustered into highland and lowland communities, following the freshwater ecoregions, but separated by an ecotone with highest biodiversity. Moreover, the caddisfly results suggest separating the heterogeneous highlands into a forested and a deforested zone. Surprisingly, the Awash drainage is rather species-poor: only 11 fish (1 endemic, 2 introduced) and 28 caddisfly species (8 new records for Ethiopia) were recorded from the mainstem and its major tributaries. Nevertheless, specialized species characterize the highland forests, whereas the lowlands primarily host geographically widely distributed species. This study showed that a combined approach of fish and caddisflies is a suitable method for assessing regional characteristics of fluvial ecosystems in the tropicsinfo:eu-repo/semantics/publishedVersio
    corecore