22 research outputs found

    Flash Sintering of Gadolinium-doped Ceria

    Get PDF
    Please click Additional Files below to see the full abstrac

    Daptomycin Population Pharmacokinetics in Patients Affected by Severe Gram-Positive Infections: An Update

    Get PDF
    Daptomycin pharmacokinetics may not depend on renal function only and it significantly differs between healthy volunteers and severely ill patients. Herein, we propose a population pharmacokinetics model based on 424 plasma daptomycin concentrations collected from 156 patients affected by severe Gram-positive infections during a routine therapeutic drug monitoring protocol. Model building and validation were performed using NONMEM 7.2 (ICON plc), Xpose4 and Perl-speaks-to-NONMEM. The final pop-PK model was a one-compartment first-order elimination model, with a 2.7% IIV for drug clearance (Cl), influence of creatinine clearance on drug clearance and of sex on distribution volume. After model validation, we simulated 10,000 patients with the Monte-Carlo method to predict the efficacy and tolerability of different daptomycin daily dosages. For the most common 6 mg/kg daily dose, the simulated probability of overcoming the toxic minimum concentration (24.3 mg/L) was 14.8% and the efficacy (expressed as a cumulative fraction of response) against methicillin-resistant S. aureus, S. pneumoniae and E. faecium was 95.77%, 99.99% and 68%, respectively. According to the model-informed precision dosing paradigm, pharmacokinetic models such as ours could help clinicians to perform patient-tailored antimicrobial dosing and maximize the odds of therapy success without neglecting toxicity risk

    Case Report: Sars-CoV-2 Infection in a Vaccinated Individual: Evaluation of the Immunological Profile and Virus Transmission Risk

    Get PDF
    During the COVID19 pandemic, a range of vaccines displayed high efficacy in preventing disease, severe outcomes of infection, and mortality. However, the immunological correlates of protection, the duration of immune response, the transmission risk over time from vaccinated individuals are currently under active investigation. In this brief report, we describe the case of a vaccinated Healthcare Professional infected with a variant of Sars-CoV-2, who has been extensively investigated in order to draw a complete trajectory of infection. The patient has been monitored for the whole length of infection, assessing the temporal viral load decay, the quantification of viral RNA and subgenomic mRNA, antibodies (anti Sars-CoV-2, IgA, IgG, IgM) and cell-mediated (cytokine, B- and T-cell profiles) responses. Overall, this brief report highlights the efficacy of vaccine in preventing COVID19 disease, accelerating the recovery from infection, reducing the transmission risk, although the use of precautionary measures against Sars-CoV-2 spreading still remain critical

    Nuclear fuels in severe accidents : caesium speciation in simulated UO2 fuels densified by SPS

    No full text
    Dans le cadre des Ă©tudes sur les accidents nuclĂ©aires graves, la connaissance du comportement des produits de fission volatils est primordiale. Le cĂ©sium prĂ©sente une volatilitĂ© Ă©levĂ©e qui peut engendrer un important impact radiologique sur l’environnement. La cinĂ©tique de relĂąchement du cĂ©sium dĂ©pend des conditions de tempĂ©rature et de potentiel d’oxygĂšne mais Ă©galement des rĂ©actions chimiques avec les autres produits de fission (Mo, Ba).La thĂšse s’inscrit dans ce contexte avec pour objectif de dĂ©finir la nature des composĂ©s qui peuvent agir sur la stabilitĂ© du Cs.L’approche expĂ©rimentale proposĂ©e repose sur la synthĂšse de combustibles nuclĂ©aires simulant (SIMFUELs) Ă  base d’UO2 dopĂ© avec Cs, Mo et Ba. Le procĂ©dĂ© de frittage assistĂ© par champ Ă©lectrique, communĂ©ment appelĂ© SPS, a Ă©tĂ© dĂ©veloppĂ© en raison de sa capacitĂ© Ă  diminuer la tempĂ©rature de densification des matĂ©riaux par rapport au frittage conventionnel.Dans une premiĂšre Ă©tape, une Ă©tude du frittage SPS d’UO2 pur a Ă©tĂ© rĂ©alisĂ©e. Deux types de poudre ont Ă©tĂ© Ă©tudiĂ©s : une poudre dite commerciale comportant des grains de taille micromĂ©trique et une poudre synthĂ©tisĂ©e au laboratoire constituĂ©e de grains nanomĂ©triques. L’énergie d’activation apparente de frittage (Qact) ainsi que les exposants de contrainte et de taille de grains (n et m respectivement) ont ainsi Ă©tĂ© calculĂ©s. Ces rĂ©sultats innovants ont rĂ©vĂ©lĂ© que l’énergie d’activation est plus faible que celle mesurĂ©e par frittage conventionnel, et que la taille de grains de la poudre joue un rĂŽle important dans le mĂ©canisme de densification.La poudre nanocristalline d’UO2 prĂ©sente une tempĂ©rature de densification abaissĂ©e, ce qui est apparu trĂšs favorable pour la synthĂšse de SIMFUELs contenant Cs, Mo et Ba. Il a pu ĂȘtre obtenu des pastilles denses et homogĂšnes pour une tempĂ©rature de frittage entre 600 et 880°C, une pression appliquĂ©e de 80 MPa et un temps de palier entre 2 et 5 minutes. Il a Ă©galement Ă©tĂ© mis en Ă©vidence un effet des dopants sur les cinĂ©tiques de frittage.La caractĂ©risation des Ă©chantillons frittĂ©s par MEB/EDX, DRX, HERFD-XANES et ICP/MS a montrĂ© que durant le frittage l’uranate de cĂ©sium (Cs2UO4, Cs2U2O7) rĂ©agit avec MoO2 pour former Cs2MoO4 et peut Ă©galement rĂ©agir avec BaMoO4.Les traitements thermiques ont Ă©tĂ© rĂ©alisĂ©s, en cellule de Knudsen de maniĂšre Ă  identifier les tempĂ©ratures de volatilisation des dopants prĂ©sents dans les SIMFUELs, et dans un appareil d’analyse thermogravimĂ©trique (ATG) Ă  diffĂ©rentes tempĂ©ratures (entre 750 et 1200°C) et pressions partielles d’oxygĂšne (entre -450 kJ/mol et -350 kJ/mol). La caractĂ©risation des Ă©chantillons recuits, rĂ©alisĂ©e par MEB/EDX, DRX et HERFD-XANES, a montrĂ©, comme attendu, un relĂąchement du cĂ©sium lorsque la tempĂ©rature augmente. Il a Ă©galement Ă©tĂ© mis en Ă©vidence un effet de la pression partielle d’oxygĂšne sur la stƓchiomĂ©trie de UO2 et la spĂ©ciation de Mo, et dans une moindre mesure sur la spĂ©ciation de Cs. De plus, des phĂ©nomĂšnes d’interaction entre Cs et Mo, et entre Cs et Ba, sont confirmĂ©s. L’emploi d’une technique haute rĂ©solution telle que HERFD-XANES a permis de mettre en Ă©vidence la prĂ©sence d’une faible quantitĂ© rĂ©siduelle de Cs, mĂȘme aprĂšs les traitements Ă  haute tempĂ©rature (1200°C). Dans ce cas le cĂ©sium est soit sous forme de gros prĂ©cipitĂ©s, soit dispersĂ© finement dans UO2.Cette Ă©tude a ainsi rĂ©vĂ©lĂ© les potentialitĂ©s et les limites d’une approche combinant la synthĂšse de SIMFUELs par frittage SPS et la caractĂ©risation par des techniques au synchrotron (HERFD-XANES), et apporte des perspectives pour les recherches futures.In case of nuclear accidental scenarios, caesium (Cs) behaviour is of great interest because of its high volatility and the resulting radiological impact on the environment.The conditions of temperature and oxygen partial pressure determine the chemical reactions between Cs and other fission products (Mo, Ba, 
) which in turn influence the Cs release.In this context, the present work aims at determining the intermediate chemical compounds influencing the final Cs stability.The experimental approach consists in the synthesis of simulated nuclear fuels (SIMFUELS) of UO2 containing Cs, Ba, and Mo. Instead of conventional sintering, a field-assisted process, namely spark plasma sintering (SPS), is employed for its ability to reduce the densification temperature.As a first step, before the introduction of FP elements, a formal analysis is proposed to study the densification of pure UO2 by SPS. Two systems are analysed and compared: a purchased powder, with standard grain size micrometer-sized particles, and an in-house synthetized powder, composed of nano-crystallites. The apparent activation energy of sintering (Qact) is calculated, as well as the stress and grain size exponents (n and m, respectively).These new results show that the activation energy is lower than in conventional sintering and that the grain size plays an important role in the densification mechanism.The nanocrystalline UO2 powder is found to be a valuable candidate for the synthesis of Cs, Mo, and Ba bearing SIMFUELs, thanks to its further lower densification temperature. A sintering temperature between 660 to 880°C, an applied pressure of 80 MPa, and a dwell time between 2 to 5 minutes, provide sufficiently dense and homogeneous pellets. It is observed that the addition of FP compounds has an effect on the densification temperature, but the Cs release is very limited, satisfying the objective of the synthesis.A complete characterization of as-sintered samples is then performed by SEM-EDX, ICP-MS, XRD, and HERFD-XANES. The characterization points to a partial reaction of Cs uranate (Cs2UO4/Cs2U2O7) with MoO2 to form Cs2MoO4, and potential interactions between Cs with Ba, when the latter is introduced as BaMoO4.The Cs behaviour is characterized during and after thermal treatments, which are in order KEMS, with the aim of the characterization during heating, and subsequently TGA analyses. Post-treatment characterization is achieved by SEM-EDX, XRD, and HERFD-XANES, on samples treated under different temperatures (750°C to 1200°C) and oxygen potentials (-450 kJ/mol to -350 kJ/mol).As expected, the increase of temperature drives a release of Cs. The effect of pO2 is observable on the UO2 stoichiometry and on the Mo speciation, but less noticeable on the Cs speciation. However, the interaction between Cs and Mo, and between Cs and Ba, is validated. Thanks to its high resolution, HERFD-XANES is the only technique able to probe a low residual Cs concentration, even after treatments at the highest temperature. This suggests that Cs can be either in the form of large and visible precipitates or finely dispersed in the matrix.This work highlights both the potential and the limitations of combining spark plasma sintered SIMFUELs with synchrotrons characterization techniques (HERFD-XANES), and gives perspectives for the future studies

    Combustibles nucléaires en conditions d'accidents graves : étude de la spéciation du césium dans un combustible UO2 obtenu par frittage SPS

    No full text
    In case of nuclear accidental scenarios, caesium (Cs) behaviour is of great interest because of its high volatility and the resulting radiological impact on the environment.The conditions of temperature and oxygen partial pressure determine the chemical reactions between Cs and other fission products (Mo, Ba, 
) which in turn influence the Cs release.In this context, the present work aims at determining the intermediate chemical compounds influencing the final Cs stability.The experimental approach consists in the synthesis of simulated nuclear fuels (SIMFUELS) of UO2 containing Cs, Ba, and Mo. Instead of conventional sintering, a field-assisted process, namely spark plasma sintering (SPS), is employed for its ability to reduce the densification temperature.As a first step, before the introduction of FP elements, a formal analysis is proposed to study the densification of pure UO2 by SPS. Two systems are analysed and compared: a purchased powder, with standard grain size micrometer-sized particles, and an in-house synthetized powder, composed of nano-crystallites. The apparent activation energy of sintering (Qact) is calculated, as well as the stress and grain size exponents (n and m, respectively).These new results show that the activation energy is lower than in conventional sintering and that the grain size plays an important role in the densification mechanism.The nanocrystalline UO2 powder is found to be a valuable candidate for the synthesis of Cs, Mo, and Ba bearing SIMFUELs, thanks to its further lower densification temperature. A sintering temperature between 660 to 880°C, an applied pressure of 80 MPa, and a dwell time between 2 to 5 minutes, provide sufficiently dense and homogeneous pellets. It is observed that the addition of FP compounds has an effect on the densification temperature, but the Cs release is very limited, satisfying the objective of the synthesis.A complete characterization of as-sintered samples is then performed by SEM-EDX, ICP-MS, XRD, and HERFD-XANES. The characterization points to a partial reaction of Cs uranate (Cs2UO4/Cs2U2O7) with MoO2 to form Cs2MoO4, and potential interactions between Cs with Ba, when the latter is introduced as BaMoO4.The Cs behaviour is characterized during and after thermal treatments, which are in order KEMS, with the aim of the characterization during heating, and subsequently TGA analyses. Post-treatment characterization is achieved by SEM-EDX, XRD, and HERFD-XANES, on samples treated under different temperatures (750°C to 1200°C) and oxygen potentials (-450 kJ/mol to -350 kJ/mol).As expected, the increase of temperature drives a release of Cs. The effect of pO2 is observable on the UO2 stoichiometry and on the Mo speciation, but less noticeable on the Cs speciation. However, the interaction between Cs and Mo, and between Cs and Ba, is validated. Thanks to its high resolution, HERFD-XANES is the only technique able to probe a low residual Cs concentration, even after treatments at the highest temperature. This suggests that Cs can be either in the form of large and visible precipitates or finely dispersed in the matrix.This work highlights both the potential and the limitations of combining spark plasma sintered SIMFUELs with synchrotrons characterization techniques (HERFD-XANES), and gives perspectives for the future studies.Dans le cadre des Ă©tudes sur les accidents nuclĂ©aires graves, la connaissance du comportement des produits de fission volatils est primordiale. Le cĂ©sium prĂ©sente une volatilitĂ© Ă©levĂ©e qui peut engendrer un important impact radiologique sur l’environnement. La cinĂ©tique de relĂąchement du cĂ©sium dĂ©pend des conditions de tempĂ©rature et de potentiel d’oxygĂšne mais Ă©galement des rĂ©actions chimiques avec les autres produits de fission (Mo, Ba).La thĂšse s’inscrit dans ce contexte avec pour objectif de dĂ©finir la nature des composĂ©s qui peuvent agir sur la stabilitĂ© du Cs.L’approche expĂ©rimentale proposĂ©e repose sur la synthĂšse de combustibles nuclĂ©aires simulant (SIMFUELs) Ă  base d’UO2 dopĂ© avec Cs, Mo et Ba. Le procĂ©dĂ© de frittage assistĂ© par champ Ă©lectrique, communĂ©ment appelĂ© SPS, a Ă©tĂ© dĂ©veloppĂ© en raison de sa capacitĂ© Ă  diminuer la tempĂ©rature de densification des matĂ©riaux par rapport au frittage conventionnel.Dans une premiĂšre Ă©tape, une Ă©tude du frittage SPS d’UO2 pur a Ă©tĂ© rĂ©alisĂ©e. Deux types de poudre ont Ă©tĂ© Ă©tudiĂ©s : une poudre dite commerciale comportant des grains de taille micromĂ©trique et une poudre synthĂ©tisĂ©e au laboratoire constituĂ©e de grains nanomĂ©triques. L’énergie d’activation apparente de frittage (Qact) ainsi que les exposants de contrainte et de taille de grains (n et m respectivement) ont ainsi Ă©tĂ© calculĂ©s. Ces rĂ©sultats innovants ont rĂ©vĂ©lĂ© que l’énergie d’activation est plus faible que celle mesurĂ©e par frittage conventionnel, et que la taille de grains de la poudre joue un rĂŽle important dans le mĂ©canisme de densification.La poudre nanocristalline d’UO2 prĂ©sente une tempĂ©rature de densification abaissĂ©e, ce qui est apparu trĂšs favorable pour la synthĂšse de SIMFUELs contenant Cs, Mo et Ba. Il a pu ĂȘtre obtenu des pastilles denses et homogĂšnes pour une tempĂ©rature de frittage entre 600 et 880°C, une pression appliquĂ©e de 80 MPa et un temps de palier entre 2 et 5 minutes. Il a Ă©galement Ă©tĂ© mis en Ă©vidence un effet des dopants sur les cinĂ©tiques de frittage.La caractĂ©risation des Ă©chantillons frittĂ©s par MEB/EDX, DRX, HERFD-XANES et ICP/MS a montrĂ© que durant le frittage l’uranate de cĂ©sium (Cs2UO4, Cs2U2O7) rĂ©agit avec MoO2 pour former Cs2MoO4 et peut Ă©galement rĂ©agir avec BaMoO4.Les traitements thermiques ont Ă©tĂ© rĂ©alisĂ©s, en cellule de Knudsen de maniĂšre Ă  identifier les tempĂ©ratures de volatilisation des dopants prĂ©sents dans les SIMFUELs, et dans un appareil d’analyse thermogravimĂ©trique (ATG) Ă  diffĂ©rentes tempĂ©ratures (entre 750 et 1200°C) et pressions partielles d’oxygĂšne (entre -450 kJ/mol et -350 kJ/mol). La caractĂ©risation des Ă©chantillons recuits, rĂ©alisĂ©e par MEB/EDX, DRX et HERFD-XANES, a montrĂ©, comme attendu, un relĂąchement du cĂ©sium lorsque la tempĂ©rature augmente. Il a Ă©galement Ă©tĂ© mis en Ă©vidence un effet de la pression partielle d’oxygĂšne sur la stƓchiomĂ©trie de UO2 et la spĂ©ciation de Mo, et dans une moindre mesure sur la spĂ©ciation de Cs. De plus, des phĂ©nomĂšnes d’interaction entre Cs et Mo, et entre Cs et Ba, sont confirmĂ©s. L’emploi d’une technique haute rĂ©solution telle que HERFD-XANES a permis de mettre en Ă©vidence la prĂ©sence d’une faible quantitĂ© rĂ©siduelle de Cs, mĂȘme aprĂšs les traitements Ă  haute tempĂ©rature (1200°C). Dans ce cas le cĂ©sium est soit sous forme de gros prĂ©cipitĂ©s, soit dispersĂ© finement dans UO2.Cette Ă©tude a ainsi rĂ©vĂ©lĂ© les potentialitĂ©s et les limites d’une approche combinant la synthĂšse de SIMFUELs par frittage SPS et la caractĂ©risation par des techniques au synchrotron (HERFD-XANES), et apporte des perspectives pour les recherches futures

    Combustibles nucléaires en conditions d'accidents graves : étude de la spéciation du césium dans un combustible UO2 obtenu par frittage SPS

    No full text
    In case of nuclear accidental scenarios, caesium (Cs) behaviour is of great interest because of its high volatility and the resulting radiological impact on the environment.The conditions of temperature and oxygen partial pressure determine the chemical reactions between Cs and other fission products (Mo, Ba, 
) which in turn influence the Cs release.In this context, the present work aims at determining the intermediate chemical compounds influencing the final Cs stability.The experimental approach consists in the synthesis of simulated nuclear fuels (SIMFUELS) of UO2 containing Cs, Ba, and Mo. Instead of conventional sintering, a field-assisted process, namely spark plasma sintering (SPS), is employed for its ability to reduce the densification temperature.As a first step, before the introduction of FP elements, a formal analysis is proposed to study the densification of pure UO2 by SPS. Two systems are analysed and compared: a purchased powder, with standard grain size micrometer-sized particles, and an in-house synthetized powder, composed of nano-crystallites. The apparent activation energy of sintering (Qact) is calculated, as well as the stress and grain size exponents (n and m, respectively).These new results show that the activation energy is lower than in conventional sintering and that the grain size plays an important role in the densification mechanism.The nanocrystalline UO2 powder is found to be a valuable candidate for the synthesis of Cs, Mo, and Ba bearing SIMFUELs, thanks to its further lower densification temperature. A sintering temperature between 660 to 880°C, an applied pressure of 80 MPa, and a dwell time between 2 to 5 minutes, provide sufficiently dense and homogeneous pellets. It is observed that the addition of FP compounds has an effect on the densification temperature, but the Cs release is very limited, satisfying the objective of the synthesis.A complete characterization of as-sintered samples is then performed by SEM-EDX, ICP-MS, XRD, and HERFD-XANES. The characterization points to a partial reaction of Cs uranate (Cs2UO4/Cs2U2O7) with MoO2 to form Cs2MoO4, and potential interactions between Cs with Ba, when the latter is introduced as BaMoO4.The Cs behaviour is characterized during and after thermal treatments, which are in order KEMS, with the aim of the characterization during heating, and subsequently TGA analyses. Post-treatment characterization is achieved by SEM-EDX, XRD, and HERFD-XANES, on samples treated under different temperatures (750°C to 1200°C) and oxygen potentials (-450 kJ/mol to -350 kJ/mol).As expected, the increase of temperature drives a release of Cs. The effect of pO2 is observable on the UO2 stoichiometry and on the Mo speciation, but less noticeable on the Cs speciation. However, the interaction between Cs and Mo, and between Cs and Ba, is validated. Thanks to its high resolution, HERFD-XANES is the only technique able to probe a low residual Cs concentration, even after treatments at the highest temperature. This suggests that Cs can be either in the form of large and visible precipitates or finely dispersed in the matrix.This work highlights both the potential and the limitations of combining spark plasma sintered SIMFUELs with synchrotrons characterization techniques (HERFD-XANES), and gives perspectives for the future studies.Dans le cadre des Ă©tudes sur les accidents nuclĂ©aires graves, la connaissance du comportement des produits de fission volatils est primordiale. Le cĂ©sium prĂ©sente une volatilitĂ© Ă©levĂ©e qui peut engendrer un important impact radiologique sur l’environnement. La cinĂ©tique de relĂąchement du cĂ©sium dĂ©pend des conditions de tempĂ©rature et de potentiel d’oxygĂšne mais Ă©galement des rĂ©actions chimiques avec les autres produits de fission (Mo, Ba).La thĂšse s’inscrit dans ce contexte avec pour objectif de dĂ©finir la nature des composĂ©s qui peuvent agir sur la stabilitĂ© du Cs.L’approche expĂ©rimentale proposĂ©e repose sur la synthĂšse de combustibles nuclĂ©aires simulant (SIMFUELs) Ă  base d’UO2 dopĂ© avec Cs, Mo et Ba. Le procĂ©dĂ© de frittage assistĂ© par champ Ă©lectrique, communĂ©ment appelĂ© SPS, a Ă©tĂ© dĂ©veloppĂ© en raison de sa capacitĂ© Ă  diminuer la tempĂ©rature de densification des matĂ©riaux par rapport au frittage conventionnel.Dans une premiĂšre Ă©tape, une Ă©tude du frittage SPS d’UO2 pur a Ă©tĂ© rĂ©alisĂ©e. Deux types de poudre ont Ă©tĂ© Ă©tudiĂ©s : une poudre dite commerciale comportant des grains de taille micromĂ©trique et une poudre synthĂ©tisĂ©e au laboratoire constituĂ©e de grains nanomĂ©triques. L’énergie d’activation apparente de frittage (Qact) ainsi que les exposants de contrainte et de taille de grains (n et m respectivement) ont ainsi Ă©tĂ© calculĂ©s. Ces rĂ©sultats innovants ont rĂ©vĂ©lĂ© que l’énergie d’activation est plus faible que celle mesurĂ©e par frittage conventionnel, et que la taille de grains de la poudre joue un rĂŽle important dans le mĂ©canisme de densification.La poudre nanocristalline d’UO2 prĂ©sente une tempĂ©rature de densification abaissĂ©e, ce qui est apparu trĂšs favorable pour la synthĂšse de SIMFUELs contenant Cs, Mo et Ba. Il a pu ĂȘtre obtenu des pastilles denses et homogĂšnes pour une tempĂ©rature de frittage entre 600 et 880°C, une pression appliquĂ©e de 80 MPa et un temps de palier entre 2 et 5 minutes. Il a Ă©galement Ă©tĂ© mis en Ă©vidence un effet des dopants sur les cinĂ©tiques de frittage.La caractĂ©risation des Ă©chantillons frittĂ©s par MEB/EDX, DRX, HERFD-XANES et ICP/MS a montrĂ© que durant le frittage l’uranate de cĂ©sium (Cs2UO4, Cs2U2O7) rĂ©agit avec MoO2 pour former Cs2MoO4 et peut Ă©galement rĂ©agir avec BaMoO4.Les traitements thermiques ont Ă©tĂ© rĂ©alisĂ©s, en cellule de Knudsen de maniĂšre Ă  identifier les tempĂ©ratures de volatilisation des dopants prĂ©sents dans les SIMFUELs, et dans un appareil d’analyse thermogravimĂ©trique (ATG) Ă  diffĂ©rentes tempĂ©ratures (entre 750 et 1200°C) et pressions partielles d’oxygĂšne (entre -450 kJ/mol et -350 kJ/mol). La caractĂ©risation des Ă©chantillons recuits, rĂ©alisĂ©e par MEB/EDX, DRX et HERFD-XANES, a montrĂ©, comme attendu, un relĂąchement du cĂ©sium lorsque la tempĂ©rature augmente. Il a Ă©galement Ă©tĂ© mis en Ă©vidence un effet de la pression partielle d’oxygĂšne sur la stƓchiomĂ©trie de UO2 et la spĂ©ciation de Mo, et dans une moindre mesure sur la spĂ©ciation de Cs. De plus, des phĂ©nomĂšnes d’interaction entre Cs et Mo, et entre Cs et Ba, sont confirmĂ©s. L’emploi d’une technique haute rĂ©solution telle que HERFD-XANES a permis de mettre en Ă©vidence la prĂ©sence d’une faible quantitĂ© rĂ©siduelle de Cs, mĂȘme aprĂšs les traitements Ă  haute tempĂ©rature (1200°C). Dans ce cas le cĂ©sium est soit sous forme de gros prĂ©cipitĂ©s, soit dispersĂ© finement dans UO2.Cette Ă©tude a ainsi rĂ©vĂ©lĂ© les potentialitĂ©s et les limites d’une approche combinant la synthĂšse de SIMFUELs par frittage SPS et la caractĂ©risation par des techniques au synchrotron (HERFD-XANES), et apporte des perspectives pour les recherches futures

    Densification mechanisms of UO2_2 consolidated by spark plasma sintering

    No full text
    International audienceDespite the growing interest in the spark plasma sintering (SPS) of uranium dioxide, its sintering mechanisms have yet to be studied in great detail. Herein we propose a direct method to calculate the apparent activation energy for densification, QactQ_{act}, and the stress exponent, nn, for SPS of nearly stoichiometric UO2_2. A set of experiments performed at different heating rates (CHR) and different pressures levels allowed us to calculate QactQ_{act} and nn, respectively, though we were limited to a theoretical density between 50% to 75 %. The master sintering curve was employed as a complementary method to compare QactQ_{act}. The average values were QactQ_{act} =96 kJ/mol (CHR), QactQ_{act} = 100 kJ/mol (MSC) and n = 1.4. We have therefore proposed grain boundary diffusion coupled with grain boundary sliding as the densification mechanism. The activation energy in SPS tends to be lower compared with that in other processes like conventional sintering (250−450 kJ/mol), creep (350−550 kJ/mol) and hot pressing (222 kJ/mol and 480 kJ/mol).This decrease could be due to the effect of the electric field combined with the higher heating rates, typical of SPS

    Densification mechanisms of UO2 consolidated by spark plasma sintering

    No full text
    Despite the growing interest in the spark plasma sintering (SPS) of uranium dioxide, its sintering mechanisms have yet to be studied in great detail. Herein we propose a direct method to calculate the apparent activation energy for densification, Qact, and the stress exponent, n, for SPS of nearly stoichiometric UO2. A set of experiments performed at different heating rates (CHR) and different pressures levels allowed us to calculate Qact and n, respectively, though we were limited to a theoretical density between 50% to 75 %. The master sintering curve was employed as a complementary method to compare Qact. The average values were Qact =96 kJ/mol (CHR), Qact = 100 kJ/mol (MSC) and n = 1.4. We have therefore proposed grain boundary diffusion coupled with grain boundary sliding as the densification mechanism. The activation energy in SPS tends to be lower compared with that in other processes like conventional sintering (250−450 kJ/mol), creep (350−550 kJ/mol) and hot pressing (222 kJ/mol and 480 kJ/mol). This decrease could be due to the effect of the electric field combined with the higher heating rates, typical of SPS.JRC.G.I.3-Nuclear Fuel Safet

    Creep and Superplasticity of Gadolinium-Doped Ceria Ceramics under AC Electric Current

    No full text
    Shaping of dense ceramics is difficult due to their inherent brittleness. Nanograined ceramics like tetragonal zirconia (TZP) can be superplastically deformed and shaped at high temperatures owing to grain boundary sliding (GBS). Herein, the enhanced plasticity of gadolinium-doped ceria (GDC) ceramics under mild and strong AC electric current in terms of steady state creep rate under both compressive and tensile loading is demonstrated. A current density of 25 and 200 mA mm−2 is used for the creep deformation. The creep rate increases by up to two orders of magnitude under electric current. The stress exponent remains unchanged for creep experiments at 1200 °C with and without electric current, suggesting a GBS mechanism of plastic deformation in both cases. The field-enhanced creep rate is attributed to the interaction of space–charge layer and the electric field resulting in enhanced GBS. A higher current density results in enhanced ductility of GDC even when the Joule heating effect is compensated by reducing the furnace temperature. </div
    corecore