6,235 research outputs found

    Is Our Model for Contention Resolution Wrong?

    Full text link
    Randomized binary exponential backoff (BEB) is a popular algorithm for coordinating access to a shared channel. With an operational history exceeding four decades, BEB is currently an important component of several wireless standards. Despite this track record, prior theoretical results indicate that under bursty traffic (1) BEB yields poor makespan and (2) superior algorithms are possible. To date, the degree to which these findings manifest in practice has not been resolved. To address this issue, we examine one of the strongest cases against BEB: nn packets that simultaneously begin contending for the wireless channel. Using Network Simulator 3, we compare against more recent algorithms that are inspired by BEB, but whose makespan guarantees are superior. Surprisingly, we discover that these newer algorithms significantly underperform. Through further investigation, we identify as the culprit a flawed but common abstraction regarding the cost of collisions. Our experimental results are complemented by analytical arguments that the number of collisions -- and not solely makespan -- is an important metric to optimize. We believe that these findings have implications for the design of contention-resolution algorithms.Comment: Accepted to the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017

    Parallel algorithm with spectral convergence for nonlinear integro-differential equations

    Get PDF
    We discuss a numerical algorithm for solving nonlinear integro-differential equations, and illustrate our findings for the particular case of Volterra type equations. The algorithm combines a perturbation approach meant to render a linearized version of the problem and a spectral method where unknown functions are expanded in terms of Chebyshev polynomials (El-gendi's method). This approach is shown to be suitable for the calculation of two-point Green functions required in next to leading order studies of time-dependent quantum field theory.Comment: 15 pages, 9 figure

    On time-dependent AdS/CFT

    Full text link
    We clarify aspects of the holographic AdS/CFT correspondence that are typical of Lorentzian signature, to lay the foundation for a treatment of time-dependent gravity and conformal field theory phenomena. We provide a derivation of bulk-to-boundary propagators associated to advanced, retarded and Feynman bulk propagators, and provide a better understanding of the boundary conditions satisfied by the bulk fields at the horizon. We interpret the subleading behavior of the wavefunctions in terms of specific vacuum expectation values, and compute two-point functions in our framework. We connect our bulk methods to the closed time path formalism in the boundary field theory.Comment: 19 pages, v2: added reference, JHEP versio

    Gauge-Invariant Renormalization Group at Finite Temperature

    Get PDF
    We propose a gauge-invariant version of Wilson Renormalization Group for thermal field theories in real time. The application to the computation of the thermal masses of the gauge bosons in an SU(N) Yang-Mills theory is discussed.Comment: 23 pages, latex2e, 1 EPS figure. The discussions of BRS identities and of the RG kernel have been modified. Final version, to appear on Nucl. Phys.

    Phase Coherence in Quantum Brownian Motion

    Get PDF
    The quantum theory of Brownian motion is discussed in the Schwinger version wherein the notion of a coordinate moving forward in time x(t)x(t) is replaced by two coordinates, x+(t)x_+(t) moving forward in time and x−(t)x_-(t) moving backward in time. The role of the doubling of the degrees of freedom is illustrated for the case of electron beam two slit diffraction experiments. Interference is computed with and without dissipation (described by a thermal bath). The notion of a dissipative interference phase, closely analogous to the Aharonov-Bohm magnetic field induced phase, is explored.Comment: 12 pages, LaTeX, 2 Figure

    1+1 Dimensional Compactifications of String Theory

    Full text link
    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero the conflict is resolved.Comment: 11 pages, 2 figures v2: added discussion of AdS_2 and comment

    Byzantine Multiple Access Channels -- Part I: Reliable Communication

    Full text link
    We study communication over a Multiple Access Channel (MAC) where users can possibly be adversarial. The receiver is unaware of the identity of the adversarial users (if any). When all users are non-adversarial, we want their messages to be decoded reliably. When a user behaves adversarially, we require that the honest users' messages be decoded reliably. An adversarial user can mount an attack by sending any input into the channel rather than following the protocol. It turns out that the 22-user MAC capacity region follows from the point-to-point Arbitrarily Varying Channel (AVC) capacity. For the 33-user MAC in which at most one user may be malicious, we characterize the capacity region for deterministic codes and randomized codes (where each user shares an independent random secret key with the receiver). These results are then generalized for the kk-user MAC where the adversary may control all users in one out of a collection of given subsets.Comment: This supercedes Part I of arxiv:1904.1192

    Byzantine Multiple Access Channels -- Part II: Communication With Adversary Identification

    Full text link
    We introduce the problem of determining the identity of a byzantine user (internal adversary) in a communication system. We consider a two-user discrete memoryless multiple access channel where either user may deviate from the prescribed behaviour. Owing to the noisy nature of the channel, it may be overly restrictive to attempt to detect all deviations. In our formulation, we only require detecting deviations which impede the decoding of the non-deviating user's message. When neither user deviates, correct decoding is required. When one user deviates, the decoder must either output a pair of messages of which the message of the non-deviating user is correct or identify the deviating user. The users and the receiver do not share any randomness. The results include a characterization of the set of channels where communication is feasible, and an inner and outer bound on the capacity region. We also show that whenever the rate region has non-empty interior, the capacity region is same as the capacity region under randomized encoding, where each user shares independent randomness with the receiver. We also give an outer bound for this randomized coding capacity region.Comment: arXiv admin note: substantial text overlap with arXiv:2105.0338
    • …
    corecore