18 research outputs found

    Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Get PDF
    International audienceNuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications

    Study on a compact and adaptable Thomson Spectrometer for laser-initiated 11B(p,α)8Be reactions and low-medium energy particle detection

    Get PDF
    Thomson Spectrometers are of primary importance in the discrimination of particles produced by laser-plasma interaction, according to their energy and charge-mass ratio. We describe here a detailed study on a set of Thomson Spectrometers, adaptable to different experimental situations, with the aim of being placed directly within the experimental chamber, rather than in additional extensions, in order to increase the solid angle of observation. These instruments are suitable for detection of low-medium energy particles and can be effectively employed in laser-plasma experiments of 11B(p,α)8Be fusion. They are provided with permanent magnets, have small dimensions and compact design. In these small configurations electric and magnetic fringing fields play a primary role for particle deflection, and their accurate characterization is required. It was accomplished by means of COMSOL electromagnetic solver coupled to an effective analytical model, very suitable for practical use of the spectrometers. Data from experimental measurements of the magnetic fields have been also used. We describe the application of the spectrometers to an experiment of laser-plasma interaction, coupled to Imaging Plate detectors. Data analysis for spectrum and yield of the detected radiation is discussed in detail. © 2016 ENEA

    PREMIUM, a benchmark on the quantification of the uncertainty of the physical models in the system thermal-hydraulic codes: methodologies and data review

    Get PDF
    The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermalhydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The present document was initially conceived as a final report for the Phase I “Introduction and Methodology Review” of the PREMIUM benchmark. The objective of Phase I is to refine the definition of the benchmark and publish the available methodologies of model input uncertainty quantification relevant to the objectives of the benchmark. In this initial version the document was approved by WGAMA and has shown its usefulness during the subsequent phases of the project. Once Phase IV was completed, and following the suggestion of WGAMA members, the document was updated adding a few new sections, particularly the description of four new methodologies that were developed during this activity. Such developments were performed by some participants while contributing to PREMIUM progress (which is why this report arrives after those of other phases). After this revision the document title was changed to “PREMIUM methodologies and data review”. The introduction includes first a chapter devoted to contextualization of the benchmark in nuclear safety research and licensing, followed by a description of the PREMIUM objectives. Next, a description of the Phases in which the benchmark is divided and its organization is explained. Chapter two consists of a review of the involvement of the different participants, making a brief explanation of the input uncertainty quantification methodologies used in the activity. The document ends with some conclusions on the development of Phase I, some more general remarks and some statements on the benefits of the benchmark, which can be briefly summarized as it follows: - Contribution to development of tools and experience related to uncertainty calculation and promotion of the use of BEPU approaches for licensing and safety assessment purposes; - Contribution to prioritization of improvements to thermal-hydraulic system codes; - Contribution to a fluent and close interaction between the scientific community and regulatory organizations. Appendices include the complete description of the experimental data FEBA/SEFLEX used in the benchmark and the methodologies CIRCÉ and FFTBM and the general requirements and description specification used for Phase I. Due to the revision of the document, four extra appendixes have been added related to the methods developed during the activity, MCDA DIPE, Tractebel IUQ and PSI methods

    Lignosulfonates: Novel promoting additives for plant tissue cultures

    Full text link
    Lignosulfonates (LIGNs) are low-cost by-products from the paper industry and are already commercialized as fertilizers. Because earlier laboratory and glasshouse assays had shown a beneficial effect of LIGNs on rooting and general plant vigor, their incorporation in several plant tissue culture types was examined here. The present assays indicated that well-chosen concentrations of LIGNs, whether they were chelated with Ca or Fe, stimulated growth of a normal and an habituated sugarbeet callus, improved multiplication rate and vigor of a shoot-proliferating poplar cluster, and increased the rooting percentage of holly, ginseng, and poplar shoots. Complementing the exogenous rooting auxin with LIGNs enhanced the increases of endogenous levels of indoleacetic acid and its aspartate conjugate in the basal parts of poplar shoots at the rooting inductive phase. Although LIGNs exerted some effects in the absence of the growth regulators, they could not replace them. Their possible mode of action is discussed

    Modelling the dynamics of ambient dose rates induced by radiocaesium in the Fukushima terrestrial environment

    No full text
    Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011–2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy depuration (through biological and physical mechanisms) and the shielding of gamma rays emitted from the forest floor by vegetation. Our study finally suggests that airborne surveys might have not reflected dose rates at ground level in forest systems, which were predicted to slightly increase by 5–10% during the same period of time. © 2015 Elsevier Lt
    corecore