318 research outputs found
Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate
Hen egg-white lysozyme (HEWL) was the first enzyme to have its three-dimensional structure determined by X-ray diffraction techniques(1). A catalytic mechanism, featuring a long-lived oxo-carbenium-ion intermediate, was proposed on the basis of model-building studies(2). The `Phillips' mechanism is widely held as the paradigm for the catalytic mechanism of beta -glycosidases that cleave glycosidic linkages with net retention of configuration of the anomeric centre. Studies with other retaining beta -glycosidases, however, provide strong evidence pointing to a common mechanism for these enzymes that involves a covalent glycosyl-enzyme intermediate, as previously postulated(3). Here we show, in three different cases using electrospray ionization mass spectrometry, a catalytically competent covalent glycosyl-enzyme intermediate during the catalytic cycle of HEWL. We also show the three-dimensional structure of this intermediate as determined by Xray diffraction. We formulate a general catalytic mechanism for all retaining beta -glycosidases that includes substrate distortion, formation of a covalent intermediate, and the electrophilic migration of C1 along the reaction coordinate
Folate polyglutamylation is required for rice seed development
In plants, polyglutamylated folate forms account for a significant proportion of the total folate pool. Polyglutamylated folate forms are produced by the enzyme folylpolyglutamate synthetase (FPGS). The FPGS enzyme is encoded by two genes in rice, Os03g02030 and Os10g35940. Os03g02030 represents the major expressed form in developing seed. To determine the function of this FPGS gene in rice, a T-DNA knockout line was characterised. Disrupting Os03g02030 gene expression resulted in delayed seed filling. LC-MS/MS-based metabolite profiling revealed that the abundance of mono- and polyglutamylated folate forms was significantly decreased in seeds of the knockout line. RT-qPCR detected an increase in the transcript abundance of folate biosynthesis genes in seed of the knockout plant, whereas the folate deglutamating enzyme ?-glutamyl hydrolase mRNA level was reduced. Our study has uncovered a novel role for folate polyglutamylation during rice seed development and a potential feedback mechanism to maintain folate abundance.(Résumé d'auteur
Practice change in chronic conditions care: an appraisal of theories
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background
Management of chronic conditions can be complex and burdensome for patients and complex and costly for health systems. Outcomes could be improved and costs reduced if proven clinical interventions were better implemented, but the complexity of chronic care services appears to make clinical change particularly challenging. Explicit use of theories may improve the success of clinical change in this area of care provision. Whilst theories to support implementation of practice change are apparent in the broad healthcare arena, the most applicable theories for the complexities of practice change in chronic care have not yet been identified.
Methods
We developed criteria to review the usefulness of change implementation theories for informing chronic care management and applied them to an existing list of theories used more widely in healthcare.
Results
Criteria related to the following characteristics of chronic care: breadth of the field; multi-disciplinarity; micro, meso and macro program levels; need for field-specific research on implementation requirements; and need for measurement. Six theories met the criteria to the greatest extent: the Consolidate Framework for Implementation Research; Normalization Process Theory and its extension General Theory of Implementation; two versions of the Promoting Action on Research Implementation in Health Services framework and Sticky Knowledge. None fully met all criteria. Involvement of several care provision organizations and groups, involvement of patients and carers, and policy level change are not well covered by most theories. However, adaptation may be possible to include multiple groups including patients and carers, and separate theories may be needed on policy change. Ways of qualitatively assessing theory constructs are available but quantitative measures are currently partial and under development for all theories.
Conclusions
Theoretical bases are available to structure clinical change research in chronic condition care. Theories will however need to be adapted and supplemented to account for the particular features of care in this field, particularly in relation to involvement of multiple organizations and groups, including patients, and in relation to policy influence. Quantitative measurement of theory constructs may present difficulties
A call for transparent reporting to optimize the predictive value of preclinical research
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress
The Impact of Socio-Demographic and Religious Factors upon Sexual Behavior among Ugandan University Students
INTRODUCTION: More knowledge is needed about structural factors in society that affect risky sexual behaviors. Educational institutions such as universities provide an opportune arena for interventions among young people. The aim of this study was to investigate the relationship between sociodemographic and religious factors and their impact on sexual behavior among university students in Uganda. METHODS: In 2005, 980 university students (response rate 80%) were assessed by a self-administered questionnaire. Validated instruments were used to assess socio-demographic and religious factors and sexual behavior. Logistic regression analyses were applied. RESULTS: Our findings indicated that 37% of the male and 49% of the female students had not previously had sex. Of those with sexual experience, 46% of the males and 23% of the females had had three or more sexual partners, and 32% of the males and 38% of the females did not consistently use condoms. For those who rated religion as less important in their family, the probability of early sexual activity and having had a high number of lifetime partners increased by a statistically significant amount (OR = 1.7; 95% CI: 1.2-2.4 and OR = 1.6; 95% CI: 1.1-2.3, respectively). However, the role of religion seemed to have no impact on condom use. Being of Protestant faith interacted with gender: among those who had debuted sexually, Protestant female students were more likely to have had three or more lifetime partners; the opposite was true for Protestant male students. CONCLUSION: Religion emerged as an important determinant of sexual behavior among Ugandan university students. Our findings correlate with the increasing number of conservative religious injunctions against premarital sex directed at young people in many countries with a high burden. of HIV/AIDS. Such influence of religion must be taken into account in order to gain a deeper understanding of the forces that shape sexual behavior in Uganda
An Engineered Viral Protease Exhibiting Substrate Specificity for a Polyglutamine Stretch Prevents Polyglutamine-Induced Neuronal Cell Death
BACKGROUND: Polyglutamine (polyQ)-induced protein aggregation is the hallmark of a group of neurodegenerative diseases, including Huntington's disease. We hypothesized that a protease that could cleave polyQ stretches would intervene in the initial events leading to pathogenesis in these diseases. To prove this concept, we aimed to generate a protease possessing substrate specificity for polyQ stretches. METHODOLOGY/PRINCIPAL FINDINGS: Hepatitis A virus (HAV) 3C protease (3CP) was subjected to engineering using a yeast-based method known as the Genetic Assay for Site-specific Proteolysis (GASP). Analysis of the substrate specificity revealed that 3CP can cleave substrates containing glutamine at positions P5, P4, P3, P1, P2', or P3', but not substrates containing glutamine at the P2 or P1' positions. To accommodate glutamine at P2 and P1', key residues comprising the active sites of the S2 or S1' pockets were separately randomized and screened. The resulting sets of variants were combined by shuffling and further subjected to two rounds of randomization and screening using a substrate containing glutamines from positions P5 through P3'. One of the selected variants (Var26) reduced the expression level and aggregation of a huntingtin exon1-GFP fusion protein containing a pathogenic polyQ stretch (HttEx1(97Q)-GFP) in the neuroblastoma cell line SH-SY5Y. Var26 also prevented cell death and caspase 3 activation induced by HttEx1(97Q)-GFP. These protective effects of Var26 were proteolytic activity-dependent. CONCLUSIONS/SIGNIFICANCE: These data provide a proof-of-concept that proteolytic cleavage of polyQ stretches could be an effective modality for the treatment of polyQ diseases
Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping
A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants
Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia
Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius
The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6–77.4 km−2) dominated by males (83∶17 male∶female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide
Optimized ancestral state reconstruction using Sankoff parsimony
<p>Abstract</p> <p>Background</p> <p>Parsimony methods are widely used in molecular evolution to estimate the most plausible phylogeny for a set of characters. Sankoff parsimony determines the minimum number of changes required in a given phylogeny when a cost is associated to transitions between character states. Although optimizations exist to reduce the computations in the number of taxa, the original algorithm takes time <it>O</it>(<it>n</it><sup>2</sup>) in the number of states, making it impractical for large values of <it>n</it>.</p> <p>Results</p> <p>In this study we introduce an optimization of Sankoff parsimony for the reconstruction of ancestral states when ultrametric or additive cost matrices are used. We analyzed its performance for randomly generated matrices, Jukes-Cantor and Kimura's two-parameter models of DNA evolution, and in the reconstruction of elongation factor-1<it>α </it>and ancestral metabolic states of a group of eukaryotes, showing that in all cases the execution time is significantly less than with the original implementation.</p> <p>Conclusion</p> <p>The algorithms here presented provide a fast computation of Sankoff parsimony for a given phylogeny. Problems where the number of states is large, such as reconstruction of ancestral metabolism, are particularly adequate for this optimization. Since we are reducing the computations required to calculate the parsimony cost of a single tree, our method can be combined with optimizations in the number of taxa that aim at finding the most parsimonious tree.</p
- …
