169 research outputs found

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Sonic Hedgehog Is a Chemoattractant for Midbrain Dopaminergic Axons

    Get PDF
    Midbrain dopaminergic axons project from the substantia nigra (SN) and the ventral tegmental area (VTA) to rostral target tissues, including the striatum, pallidum, and hypothalamus. The axons from the medially located VTA project primarily to more medial target tissues in the forebrain, whereas the more lateral SN axons project to lateral targets including the dorsolateral striatum. This structural diversity underlies the distinct functions of these pathways. Although a number of guidance cues have been implicated in the formation of the distinct axonal projections of the SN and VTA, the molecular basis of their diversity remains unclear. Here we investigate the molecular basis of structural diversity in mDN axonal projections. We find that Sonic Hedgehog (Shh) is expressed at a choice point in the course of the rostral dopaminergic projections. Furthermore, in midbrain explants, dopaminergic projections are attracted to a Shh source. Finally, in mice in which Shh signaling is inactivated during late neuronal development, the most medial dopaminergic projections are deficient

    “Excellence R Us”: university research and the fetishisation of excellence

    Get PDF
    The rhetoric of “excellence” is pervasive across the academy. It is used to refer to research outputs as well as researchers, theory and education, individuals and organisations, from art history to zoology. But does “excellence” actually mean anything? Does this pervasive narrative of “excellence” do any good? Drawing on a range of sources we interrogate “excellence” as a concept and find that it has no intrinsic meaning in academia. Rather it functions as a linguistic interchange mechanism. To investigate whether this linguistic function is useful we examine how the rhetoric of excellence combines with narratives of scarcity and competition to show that the hypercompetition that arises from the performance of “excellence” is completely at odds with the qualities of good research. We trace the roots of issues in reproducibility, fraud, and homophily to this rhetoric. But we also show that this rhetoric is an internal, and not primarily an external, imposition. We conclude by proposing an alternative rhetoric based on soundness and capacity-building. In the final analysis, it turns out that that “excellence” is not excellent. Used in its current unqualified form it is a pernicious and dangerous rhetoric that undermines the very foundations of good research and scholarship

    1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice

    Get PDF
    BACKGROUND: Human medulloblastomas exhibit diverse molecular pathology. Aberrant hedgehog signalling is found in 20-30% of human medulloblastomas with largely unknown metabolic consequences. METHODS: Transgenic mice over-expressing smoothened (SMO) receptor in granule cell precursors with high incidence of exophytic medulloblastomas were sequentially followed up by magnetic resonance imaging (MRI) and characterised for metabolite phenotypes by ¹H MR spectroscopy (MRS) in vivo and ex vivo using high-resolution magic angle spinning (HR-MAS) ¹H MRS. RESULTS: Medulloblastomas in the SMO mice presented as T₂ hyperintense tumours in MRI. These tumours showed low concentrations of N-acetyl aspartate and high concentrations of choline-containing metabolites (CCMs), glycine, and taurine relative to the cerebellar parenchyma in the wild-type (WT) C57BL/6 mice. In contrast, ¹H MRS metabolite concentrations in normal appearing cerebellum of the SMO mice were not different from those in the WT mice. Macromolecule and lipid ¹H MRS signals in SMO medulloblastomas were not different from those detected in the cerebellum of WT mice. The HR-MAS analysis of SMO medulloblastomas confirmed the in vivo ¹H MRS metabolite profiles, and additionally revealed that phosphocholine was strongly elevated in medulloblastomas accounting for the high in vivo CCM. CONCLUSIONS: These metabolite profiles closely mirror those reported from human medulloblastomas confirming that SMO mice provide a realistic model for investigating metabolic aspects of this disease. Taurine, glycine, and CCM are potential metabolite biomarkers for the SMO medulloblastomas. The MRS data from the medulloblastomas with defined molecular pathology is discussed in the light of metabolite profiles reported from human tumours

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Integrating an internet-mediated walking program into family medicine clinical practice: a pilot feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regular participation in physical activity can prevent many chronic health conditions. Computerized self-management programs are effective clinical tools to support patient participation in physical activity. This pilot study sought to develop and evaluate an online interface for primary care providers to refer patients to an Internet-mediated walking program called Stepping Up to Health (SUH) and to monitor participant progress in the program.</p> <p>Methods</p> <p>In Phase I of the study, we recruited six pairs of physicians and medical assistants from two family practice clinics to assist with the design of a clinical interface. During Phase II, providers used the developed interface to refer patients to a six-week pilot intervention. Provider perspectives were assessed regarding the feasibility of integrating the program into routine care. Assessment tools included quantitative and qualitative data gathered from semi-structured interviews, surveys, and online usage logs.</p> <p>Results</p> <p>In Phase I, 13 providers used SUH and participated in two interviews. Providers emphasized the need for alerts flagging patients who were not doing well and the ability to review participant progress. Additionally, providers asked for summary views of data across all enrolled clinic patients as well as advertising materials for intervention recruitment. In response to this input, an interface was developed containing three pages: 1) a recruitment page, 2) a summary page, and 3) a detailed patient page. In Phase II, providers used the interface to refer 139 patients to SUH and 37 (27%) enrolled in the intervention. Providers rarely used the interface to monitor enrolled patients. Barriers to regular use of the intervention included lack of integration with the medical record system, competing priorities, patient disinterest, and physician unease with exercise referrals. Intention-to-treat analyses showed that patients increased walking by an average of 1493 steps/day from pre- to post-intervention (<it>t </it>= (36) = 4.13, <it>p </it>< 0.01).</p> <p>Conclusions</p> <p>Providers successfully referred patients using the SUH provider interface, but were less willing to monitor patient compliance in the program. Patients who completed the program significantly increased their step counts. Future research is needed to test the effectiveness of integrating SUH with clinical information systems over a longer evaluation period.</p

    GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice

    Get PDF
    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation

    Walk with Me: a protocol for a pilot RCT of a peer-led walking programme to increase physical activity in inactive older adults

    Get PDF
    Background: Levels of physical activity decline with age. Some of the most disadvantaged individuals in society, such as those from lower socio-economic position, are also the most inactive. Increasing physical activity levels, particularly among those most inactive, is a public health priority. Peer-led physical activity interventions may offer a model to increase physical activity in the older adult population. This study aims to test the feasibility of a peer-led, multicomponent physical activity intervention in socio-economically disadvantaged community dwelling older adults. Methods: The Medical Research Council framework for developing and evaluating complex interventions will be used to design and test the feasibility of a randomised controlled trial (RCT) of a multicomponent peer-led physical activity intervention. Data will be collected at baseline, immediately after the intervention (12 weeks) and 6 months after baseline measures. The pilot RCT will provide information on recruitment of peer mentors and participants and attrition rates, intervention fidelity, and data on the variability of the primary outcome (minutes of moderate to vigorous physical activity measured with an accelerometer). The pilot trail will also assess the acceptability of the intervention and identify potential resources needed to undertake a definitive study. Data analyses will be descriptive and include an evaluation of eligibility, recruitment, and retention rates. The findings will be used to estimate the sample size required for a definitive trial. A detailed process evaluation using qualitative and quantitative methods will be conducted with a variety of stakeholders to identify areas of success and necessary improvements. Discussion: This paper describes the protocol for the ‘Walk with Me’ pilot RCT which will provide the information necessary to inform the design and delivery of a fully powered trial should the Walk with Me intervention prove feasible

    Hedgehog-mediated regulation of PPARγ controls metabolic patterns in neural precursors and shh-driven medulloblastoma

    Get PDF
    Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, such Shh-mediated metabolic reprogramming fuels tumor progression, in an E2F1- and FASN-dependent manner. Here, we show that the nutrient sensor PPARγ is a key component of the Shh metabolic network, particularly its regulation of glycolysis. Our data show that in primary cerebellar granule neural precursors (CGNPs), proposed medulloblastoma cells-of-origin, Shh stimulation elicits a marked induction of PPARγ alongside major glycolytic markers. This is also documented in the actively proliferating Shh-responsive CGNPs in the developing cerebellum, and PPARγ expression is strikingly elevated in Shh-driven medulloblastoma in vivo. Importantly, pharmacological blockade of PPARγ and/or Rb inactivation inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals in vivo. This coupling of mitogenic Shh signaling to a major nutrient sensor and metabolic transcriptional regulator define a novel mechanism through which Shh signaling engages the nutrient sensing machinery in brain cancer, controls the cell cycle, and regulates the glycolytic index. This also reveals a dominant role of Shh in the etiology of glucose metabolism in medulloblastoma and underscores the function of the Shh → E2F1 → PPARγ axis in altering substrate utilization patterns in brain cancers in favor of tumor growth. These findings emphasize the value of PPARγ downstream of Shh as a global therapeutic target in hedgehog-dependent and/or Rb-inactivated tumors
    corecore