1,238 research outputs found

    Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models

    Get PDF
    Understanding how ensembles of neurons represent and transmit information in the patterns of their joint spiking activity is a fundamental question in computational neuroscience. At present, analyses of spiking activity from neuronal ensembles are limited because multivariate point process (MPP) models cannot represent simultaneous occurrences of spike events at an arbitrarily small time resolution. Solo recently reported a simultaneous-event multivariate point process (SEMPP) model to correct this key limitation. In this paper, we show how Solo's discrete-time formulation of the SEMPP model can be efficiently fit to ensemble neural spiking activity using a multinomial generalized linear model (mGLM). Unlike existing approximate procedures for fitting the discrete-time SEMPP model, the mGLM is an exact algorithm. The MPP time-rescaling theorem can be used to assess model goodness-of-fit. We also derive a new marked point-process (MkPP) representation of the SEMPP model that leads to new thinning and time-rescaling algorithms for simulating an SEMPP stochastic process. These algorithms are much simpler than multivariate extensions of algorithms for simulating a univariate point process, and could not be arrived at without the MkPP representation. We illustrate the versatility of the SEMPP model by analyzing neural spiking activity from pairs of simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections, and by simulating SEMPP data. In the data analysis example, the SEMPP model demonstrates that whisker motion significantly modulates simultaneous spiking activity at the 1 ms time scale and that the stimulus effect is more than one order of magnitude greater for simultaneous activity compared with non-simultaneous activity. Together, the mGLM, the MPP time-rescaling theorem and the MkPP representation of the SEMPP model offer a theoretically sound, practical tool for measuring joint spiking propensity in a neuronal ensemble

    Robust spectrotemporal decomposition by iteratively reweighted least squares

    Get PDF
    Classical nonparametric spectral analysis uses sliding windows to capture the dynamic nature of most real-world time series. This universally accepted approach fails to exploit the temporal continuity in the data and is not well-suited for signals with highly structured time–frequency representations. For a time series whose time-varying mean is the superposition of a small number of oscillatory components, we formulate nonparametric batch spectral analysis as a Bayesian estimation problem. We introduce prior distributions on the time–frequency plane that yield maximum a posteriori (MAP) spectral estimates that are continuous in time yet sparse in frequency. Our spectral decomposition procedure, termed spectrotemporal pursuit, can be efficiently computed using an iteratively reweighted least-squares algorithm and scales well with typical data lengths. We show that spectrotemporal pursuit works by applying to the time series a set of data-derived filters. Using a link between Gaussian mixture models, ℓ[subscript 1] minimization, and the expectation–maximization algorithm, we prove that spectrotemporal pursuit converges to the global MAP estimate. We illustrate our technique on simulated and real human EEG data as well as on human neural spiking activity recorded during loss of consciousness induced by the anesthetic propofol. For the EEG data, our technique yields significantly denoised spectral estimates that have significantly higher time and frequency resolution than multitaper spectral estimates. For the neural spiking data, we obtain a new spectral representation of neuronal firing rates. Spectrotemporal pursuit offers a robust spectral decomposition framework that is a principled alternative to existing methods for decomposing time series into a small number of smooth oscillatory components.National Institutes of Health (U.S.) (Transformative Research Award GM 104948)National Institutes of Health (U.S.) (New Innovator Award R01-EB006385

    Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats

    Get PDF
    BACKGROUND: Although emergence from general anesthesia is clinically treated as a passive process driven by the pharmacokinetics of drug clearance, agents that hasten recovery from general anesthesia may be useful for treating delayed emergence, emergence delirium, and postoperative cognitive dysfunction. Activation of central monoaminergic neurotransmission with methylphenidate has been shown to induce reanimation (active emergence) from general anesthesia. Cholinergic neurons in the brainstem and basal forebrain are also known to promote arousal. The objective of this study was to test the hypothesis that physostigmine, a centrally acting cholinesterase inhibitor, induces reanimation from isoflurane anesthesia in adult rats. METHODS: The dose-dependent effects of physostigmine on time to emergence from a standardized isoflurane general anesthetic were tested. It was then determined whether physostigmine restores righting during continuous isoflurane anesthesia. In a separate group of rats with implanted extradural electrodes, physostigmine was administered during continuous inhalation of 1.0% isoflurane, and the electroencephalogram changes were recorded. Finally, 2.0% isoflurane was used to induce burst suppression, and the effects of physostigmine and methylphenidate on burst suppression probability (BSP) were tested. RESULTS: Physostigmine delayed time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg (n = 9). During continuous isoflurane anesthesia (0.9% ± 0.1%), physostigmine did not restore righting (n = 9). Blocking the peripheral side effects of physostigmine with the coadministration of glycopyrrolate (a muscarinic antagonist that does not cross the blood-brain barrier) produced similar results (n = 9 each). However, during inhalation of 1.0% isoflurane, physostigmine shifted peak electroencephalogram power from δ ( < 4 Hz) to θ (4-8 Hz) in 6 of 6 rats. During continuous 2.0% isoflurane anesthesia, physostigmine induced large, statistically significant decreases in BSP in 6 of 6 rats, whereas methylphenidate did not. CONCLUSIONS: Unlike methylphenidate, physostigmine does not accelerate time to emergence from isoflurane anesthesia and does not restore righting during continuous isoflurane anesthesia. However, physostigmine consistently decreases BSP during deep isoflurane anesthesia, whereas methylphenidate does not. These findings suggest that activation of cholinergic neurotransmission during isoflurane anesthesia produces arousal states that are distinct from those induced by monoaminergic activation.National Institutes of Health (U.S.) (Grant TR01-GM104948)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K08-GM094394

    An explanation for a universality of transition temperatures in families of copper oxide superconductors

    Full text link
    A remarkable mystery of the copper oxide high-transition-temperature (Tc) superconductors is the dependence of Tc on the number of CuO2 layers, n, in the unit cell of a crystal. In a given family of these superconductors, Tc rises with the number of layers, reaching a peak at n=3, and then declines: the result is a bell-shaped curve. Despite the ubiquity of this phenomenon, it is still poorly understood and attention has instead been mainly focused on the properties of a single CuO2 plane. Here we show that the quantum tunnelling of Cooper pairs between the layers simply and naturally explains the experimental results, when combined with the recently quantified charge imbalance of the layers and the latest notion of a competing order nucleated by this charge imbalance that suppresses superconductivity. We calculate the bell-shaped curve and show that, if materials can be engineered so as to minimize the charge imbalance as n increases, Tc can be raised further.Comment: 15 pages, 3 figures. The version published in Natur

    Importance of Ethnicity, CYP2B6 and ABCB1 Genotype for Efavirenz Pharmacokinetics and Treatment Outcomes: A Parallel-group Prospective Cohort Study in two sub-Saharan Africa Populations.

    Get PDF
    We evaluated the importance of ethnicity and pharmacogenetic variations in determining efavirenz pharmacokinetics, auto-induction and immunological outcomes in two African populations. ART naïve HIV patients from Ethiopia (n = 285) and Tanzania (n = 209) were prospectively enrolled in parallel to start efavirenz based HAART. CD4+ cell counts were determined at baseline, 12, 24 and 48 weeks. Plasma and intracellular efavirenz and 8-hydroxyefvairenz concentrations were determined at week 4 and 16. Genotyping for common functional CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 variant alleles were done. Patient country, CYP2B6*6 and ABCB1 c.4036A>G (rs3842A>G) genotype were significant predictors of plasma and intracellular efavirenz concentration. CYP2B6*6 and ABCB1 c.4036A>G (rs3842) genotype were significantly associated with higher plasma efavirenz concentration and their allele frequencies were significantly higher in Tanzanians than Ethiopians. Tanzanians displayed significantly higher efavirenz plasma concentration at week 4 (p<0.0002) and week 16 (p = 0.006) compared to Ethiopians. Efavirenz plasma concentrations remained significantly higher in Tanzanians even after controlling for the effect of CYP2B6*6 and ABCB1 c.4036A>G genotype. Within country analyses indicated a significant decrease in the mean plasma efavirenz concentration by week 16 compared to week 4 in Tanzanians (p = 0.006), whereas no significant differences in plasma concentration over time was observed in Ethiopians (p = 0.84). Intracellular efavirenz concentration and patient country were significant predictors of CD4 gain during HAART. We report substantial differences in efavirenz pharmacokinetics, extent of auto-induction and immunologic recovery between Ethiopian and Tanzanian HIV patients, partly but not solely, due to pharmacogenetic variations. The observed inter-ethnic variations in efavirenz plasma exposure may possibly result in varying clinical treatment outcome or adverse event profiles between populations

    Characterization of disease course and remission in early seropositive rheumatoid arthritis: results from the TACERA longitudinal cohort study

    Get PDF
    Background: To characterise disease course and remission in a longitudinal observational study of newly diagnosed, initially treatment-naïve patients with seropositive rheumatoid arthritis (RA). Methods: Patients with early untreated seropositive RA were recruited from 28 UK centres. Multiple clinical and laboratory measures were collected every 3 months for up to 18 months. Disease activity was measured using the 28-joint Disease Activity Score with C-reactive protein (DAS28-CRP) and Simplified Disease Activity Index (SDAI). Logistic regression models examined clinical predictors of 6-month remission and latent class mixed models characterised disease course. Results: We enrolled 275 patients of whom 267 met full eligibility and provided baseline data. According to SDAI definition, 24.3% attained 6-month remission. Lower baseline Health Assessment Questionnaire (HAQ) and SDAI predicted 6-month remission (p = 0.013 and 0.011). Alcohol intake and baseline prescribing of methotrexate with a second disease-modifying antirheumatic drug (DMARD; vs monotherapy without glucocorticoids) were also predictive. Three distinct SDAI trajectory subpopulations emerged; corresponding to an inadequate responder group (6.5%), and higher and lower baseline activity responder groups (22.4% and 71.1%). Baseline HAQ and Short Form-36 Health Survey – Mental Component Score (SF-36 MCS) distinguished these groups. In addition, a number of baseline clinical predictors correlated with disease activity severity within subpopulations. Beneficial effects of alcohol intake were found across subpopulations. Conclusion: Three distinct disease trajectory subpopulations were identified. Differential effects of functional and mental well-being, alcohol consumption, and baseline RA medication prescribing on disease activity severity were found across subpopulations. Heterogeneity across trajectories cannot be fully explained by baseline clinical predictors. We hypothesise that biological markers collected early in disease course (within 6 months) may help patient management and better targeting of existing and novel therapies

    Delay in diagnosis of muscle disorders depends on the subspecialty of the initially consulted physician

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New therapeutic strategies in muscular dystrophies will make a difference in prognosis only if they are begun early in the course of the disease. Therefore, we investigated factors that influence the time to diagnosis in muscle dystrophy patients.</p> <p>Methods</p> <p>A sample of 101 patients (mean age 49 years; range 19-80; 44% women) with diagnosed muscle dystrophies from neurological practices and the neuromuscular specialty clinic in Berlin, Germany, was invited to participate. Time from first consultation to diagnosis, subspecialty of physician, and sociodemographic data were assessed with self-report questionnaires. The association between time to diagnosis and potential predictors (subspecialty of initially consulted physician, diagnoses, gender, and age at onset) was modeled with linear regression analysis.</p> <p>Results</p> <p>The mean time span between first health-care contact and diagnosis was 4.3 years (median 1). The diagnostic delay was significantly longer if patients were initially seen by a non-neurological specialist compared to a general practitioner (5.2 vs. 3.5 years, p = 0.047). Other factors that were independently associated with diagnostic delay were female gender and inherited muscle disease.</p> <p>Conclusion</p> <p>Action to improve clinical awareness of muscle diseases in non-neurological specialists is needed.</p

    Tracking The Leader: Gaze Behaviour In Group Interactions

    Get PDF
    Can social gaze behaviour reveal the leader during real-world group interactions? To answer this question, we developed a novel tripartite approach combining i) computer vision methods for remote gaze estimation, ii) a detailed taxonomy to encode the implicit semantics of multi-party gaze features, and iii) machine learning methods to establish dependencies between leadership and visual behaviours. We found that social gaze behaviour distinctively identified group leaders. Crucially, the relationship between leadership and gaze behaviour generalized across democratic and autocratic leadership styles under conditions of low and high time-pressure, suggesting that gaze can serve as a general marker of leadership. These findings provide the first direct evidence that group visual patterns can reveal leadership across different social behaviours and validate a new promising method for monitoring natural group interactions

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance
    corecore