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Classical nonparametric spectral analysis uses sliding windows to
capture the dynamic nature of most real-world time series. This
universally accepted approach fails to exploit the temporal continu-
ity in the data and is not well-suited for signals with highly
structured time–frequency representations. For a time series whose
time-varying mean is the superposition of a small number of
oscillatory components, we formulate nonparametric batch spec-
tral analysis as a Bayesian estimation problem. We introduce
prior distributions on the time–frequency plane that yield maximum
a posteriori (MAP) spectral estimates that are continuous in time yet
sparse in frequency. Our spectral decomposition procedure, termed
spectrotemporal pursuit, can be efficiently computed using an itera-
tively reweighted least-squares algorithm and scales well with typ-
ical data lengths. We show that spectrotemporal pursuit works by
applying to the time series a set of data-derived filters. Using a link
between Gaussian mixture models, ℓ1 minimization, and the expec-
tation–maximization algorithm, we prove that spectrotemporal pur-
suit converges to the global MAP estimate. We illustrate our tech-
nique on simulated and real human EEG data as well as on human
neural spiking activity recorded during loss of consciousness induced
by the anesthetic propofol. For the EEG data, our technique yields
significantly denoised spectral estimates that have significantly
higher time and frequency resolution than multitaper spectral esti-
mates. For the neural spiking data, we obtain a new spectral repre-
sentation of neuronal firing rates. Spectrotemporal pursuit offers
a robust spectral decomposition framework that is a principled alter-
native to existing methods for decomposing time series into a small
number of smooth oscillatory components.
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Across nearly all fields of science and engineering, dynamic
behavior in time-series data, due to evolving temporal and/or

spatial features, is a ubiquitous phenomenon. Common examples
include speech (1), image, and video (2) signals; neural spike
trains (3) and EEG (4) measurements; seismic and oceanographic
recordings (5); and radar emissions (6). Because the temporal and
spatial dynamics in these time series are often complex, non-
parametric spectral techniques, rather than parametric, model-
based approaches (7), are the methods most widely applied in the
analysis of these data. Nonparametric spectral techniques based
on Fourier methods (8, 9), wavelets (10, 11), and data-dependent
approaches, such as the empirical mode decomposition (EMD)
(12, 13), use sliding windows to take account of the dynamic
behavior. Although analysis with sliding windows is universally
accepted, this approach has several drawbacks.
First, the spectral estimates computed in a given window do

not use the estimates computed in adjacent windows, hence the
resulting spectral representations do not fully capture the degree
of smoothness inherent in the underlying signal. Second, the
uncertainty principle (14) imposes stringent limits on the spectral
resolution achievable by Fourier-based methods within a window
(8, 9). Because the spectral resolution is inversely proportional to
the window length, sliding window-based spectral analyses are

problematic when the signal dynamics occur at a shorter time-
scale than the window length. Third, in many analyses, such as
EEG studies (15), speech processing (1), and applications of EMD
(13), a common objective is to compute time–frequency repre-
sentations that are smooth (continuous) in time and sparse in
frequency. Current spectral estimation procedures are not spe-
cifically tailored to achieve smoothness in time and sparsity in
frequency. Finally, batch time-series analyses are also common in
many applications (5, 12, 13, 15). Although the batch analyses can
use all of the data in the recorded time series to estimate the time–
frequency representation at each time point, spectral estimation
limited to local windows remains the solution of choice because
the computational demands of batch analyses scale poorly with the
length of the time series. Using all of the data in batch spectral
analyses would enhance both time and frequency resolution.
For a time series whose time-varying mean is the superposition

of a small number of smooth oscillatory components, we for-
mulate nonparametric batch spectral analysis as a Bayesian es-
timation problem. We assume a Gaussian or a point-process
observation model for the time series and introduce prior dis-
tributions on the time–frequency plane that yield maximum
a posteriori (MAP) spectral estimates that are smooth (contin-
uous) in time yet sparse in frequency. Our choice of prior dis-
tributions is motivated by EMD (13), and its variants (11, 16),
which decompose signals into a small number of oscillatory
components. We term our procedure “spectrotemporal pursuit.”

Significance

Classical spectral estimation techniques use sliding windows to
enforce temporal smoothness of the spectral estimates of sig-
nals with time-varying spectrotemporal representations. This
widely applied approach is not well-suited to signals that have
low-dimensional, highly structured time–frequency repre-
sentations. We develop a new Bayesian spectral decomposition
framework—spectrotemporal pursuit—to compute spectral
estimates that are smooth in time and sparse in frequency. We
use a statistical interpretation of sparse recovery to derive ef-
ficient algorithms for computing spectrotemporal pursuit
spectral estimates. We apply spectrotemporal pursuit to ach-
ieve a more precise delineation of the oscillatory structure of
human electroencephalogram and neural spiking data under
propofol general anesthesia. Spectrotemporal pursuit offers
a principled alternative to existing methods for decomposing
a signal into a small number of oscillatory components.

Author contributions: D.B., B.B., P.L.P., and E.N.B. designed research; D.B. and B.B. per-
formed research; D.B., B.B., and E.N.B. contributed new analytic tools; D.B. and B.B.
analyzed data; and D.B., B.B., and E.N.B. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. Email: demba@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1320637111/-/DCSupplemental.

E5336–E5345 | PNAS | Published online December 2, 2014 www.pnas.org/cgi/doi/10.1073/pnas.1320637111

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1320637111&domain=pdf
mailto:demba@mit.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320637111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1320637111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1320637111


To compute the spectrotemporal pursuit spectral estimate, we
develop highly efficient, recursive, iteratively reweighted least-
squares (IRLS) algorithms in which each iteration is implemented
by using fixed interval smoothing algorithms (17, 18). We prove
that the spectrotemporal pursuit spectral estimates converge to
the global MAP estimates by using an important link between
Gaussian mixture models, ℓ1 minimization, and the expectation–
maximization algorithm (19, 20). We show that computation of
the spectrotemporal pursuit spectral estimates is equivalent to
applying to the time series a bank of data-dependent filters, one
for each oscillatory component.
We illustrate spectrotemporal pursuit in simulation studies as

well as in analyses of human EEG and neural spiking data (15, 21)
recorded during unconsciousness induced by the anesthetic pro-
pofol. The spectrotemporal pursuit analysis of the EEG data
yields significantly denoised spectral estimates that have higher
time and frequency resolution than multitaper spectral estimates.
Our analysis of the neural spiking data yields a new spectral de-
scription of neural firing rates that can further our understanding
of the relationship of spiking activity to local field potentials.

Toy Example
We begin with a toy example to highlight the deficiencies of
classical techniques in analyzing time series that exhibit dynamic
behavior and the limits they impose on spectral resolution (8, 9).
We simulated noisy observations from the linear combination of
two amplitude-modulated signals as

yt = 10cos8ð2πf0tÞsinð2πf1tÞ

+ 10 exp
�
4
t−T
T

�
cosð2πf2tÞ+ vt; for  0≤ t≤T;

[1]

where f0 = 0:04 Hz, f1 = 10 Hz, f2 = 11 Hz, T = 600 s, and ðvtÞTt=1
is independent, identically distributed, zero-mean Gaussian
noise with variance set to achieve a signal-to-noise ratio (SNR)
of 5 dB. The simulated data (Fig. 1) consist of a 10-Hz oscillation
whose amplitude is modulated by a slow 0.04-Hz oscillation, and
an exponentially growing 11-Hz oscillation. The former is moti-
vated by the fact that low-frequency (<1 Hz) phase modulates
alpha (8–12 Hz) amplitude during profound unconsciousness,
and during the transition into and out of unconsciousness, under
propofol-induced general anesthesia (15, 21). We incorporated
the latter to demonstrate the desire, in certain applications, to
resolve closely spaced amplitude-modulated signals.

This toy example poses serious challenges for classical spectral
estimation algorithms due to the strong amplitude modulation
and dynamic behaviors, observation noise, and identifiability
issues (the decomposition is not unique) (11).
In the next section, we develop an analysis paradigm to sep-

arate signals such as the 10-and 11-Hz oscillations and recover
the time-varying modulating signals. The key to our spectral
decomposition framework is the concept of a structured time–
frequency representation.

Theory: Robust Spectral Decomposition
The State-Space Model. Consider a discrete-time signal yt; t=
1; 2;⋯;T obtained by sampling of an underlying, noise-cor-
rupted, continuous-time signal at a rate fs (above the Nyquist
rate). Given an arbitrary interval of length W, let yndðyðn− 1ÞW + 1;
yðn− 1ÞW + 2;⋯; ynW Þ′ for n= 1; 2;⋯;N with Nd T

W . Without loss
of generality, we assume that T is an integer multiple of W and
consider the following spectrotemporal representation of yn as

yn = ~Fn~xn + vn; [2]

where ð~FnÞl;kdexp
�
j2π
�ðn− 1ÞW + l

�ðk− 1Þ
K

�
for l= 1; 2;⋯;W and

k= 1; 2;⋯;K , ~xndð~xn;1;~xn;2;⋯;~xn;K Þ′∈CK , with K being a posi-
tive integer, and vn is independent, identically distributed,
additive zero-mean Gaussian noise. Equivalently, we can de-
fine the linear observation model of Eq. 2 over a real vector
space as follows:

yn =Fnxn + vn; [3]

where ðFnÞl;k := cos
�
2π
�ðn− 1ÞW + l

�ðk− 1Þ
K

�
and ðFnÞl;k+K=2 :=

sin
�
2π
�ðn−1ÞW + lÞ k− 1+K=2

K

�
for l= 1; 2;⋯;W and k= 1; 2;⋯; K2,

and xndðxn;1; xn;2;⋯; xn;KÞ′∈RK . We may rewrite Eq. 3 conve-
niently in vector form as y=Fx+ v, where F is a T ×NK block-
diagonal matrix with Fn on the diagonal blocks:

Fd

0
BB@

F1
F2

⋱
FN

1
CCA; [4]

y= ðy1; y2;⋯; yTÞ′∈RT , x= ðx′1; x′2;⋯; x′NÞ′∈RNK , and v= ðv′1;
v′2;⋯; v′NÞ′∈RT. We view x as a time–frequency representation
of the time-varying mean of the signal y.
As we show in A Spectrotemporal Pursuit Analysis of Neural

Spiking Activity, we can generalize this linear Gaussian forward
model to nonlinear spectrotemporal parameterizations of the
joint distribution of non-Gaussian data.
Our objective is to compute an estimate x̂ of x given the data y.

The component-wise magnitude-squared of x̂∈RNK then gives
an estimate of the magnitude spectrum of y. Classical spectral
estimation techniques use sliding windows with overlap to im-
plicitly enforce temporal smoothness of the oscillatory compo-
nents; i.e., adjacent spectral estimates are intended to be close in
value. However, rather than being stated explicitly in the form of
a model (deterministic or stochastic) for the evolution of the
spectral estimates, the temporal smoothness is implicit in the
degree of nonoverlap of the respective windows. Moreover, these
techniques do not consider sparsity in the frequency domain. In
contrast, we take a direct approach that treats ðxnÞNn=1 as the
realization of a sequence of random variables and uses a prior
distribution to impose explicitly a stochastic continuity constraint
on its elements across time. We impose a model on the components
ðxn;kÞKk=1 for each n= 1; 2;⋯;N to enforce sparsity in the frequency
domain. Starting with an initial condition x0 = ð0; . . . ; 0Þ′∈RK , we
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Fig. 1. Linear combination of two amplitude-modulated oscillations at 10-
and 11-Hz frequencies, respectively, observed in independent, identically
distributed, additive, zero-mean Gaussian noise with variance set to achieve
an SNR of 5 dB. (A) The full simulated data according to Eq. 1. (B) Zoomed-in
view from t =295 s to t = 305 s.

Ba et al. PNAS | Published online December 2, 2014 | E5337

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

PN
A
S
PL

U
S



can express the stochastic continuity constraint in the form of the
first-order difference equation

xn = xn−1 +wn; [5]

where w= ðw1′;w2′;⋯;wN′Þ′∈RNK is a random vector. To impose
stochastic continuity, we assume a joint prior probability density
function over w1;w2;⋯;wN , which in turn imposes a joint prob-
ability density function on ðxnÞNn=1. Motivated by the empirical
mode decomposition (13) and its variants (11, 16), we choose prior
densities that enforce sparsity in the frequency domain and smooth-
ness in time. In logarithmic form, the priors we propose are

log p1ðw1;w2;⋯;wNÞ=−α1
XK
k=1

 XN
n=1

w2
n;k + e2

!1
2

+ c1; [6]

and

log p2ðw1;w2;⋯;wNÞ=−α2
XK
k=1

 XN
n=1

�
w2
n;k + e2

�1
2

!1
2

+ c2; [7]

where α1 > 0 and α2 > 0 are constants, ec1 and ec2 are normaliza-
tion constants, and e> 0 is a small constant. These priors belong
to the Gaussian scale mixture (GSM) family of densities (19, 20).
This family of densities has robustness properties in the statistical
sense (22). Both p1ð·Þ and p2ð·Þ enforce inverse solutions that are
spatially sparse and temporally smooth. Indeed, one can interpret
Eqs. 6 and 7 as forms of dynamic group-sparse regularization (23).
Unlike p1ð·Þ, p2ð·Þ can capture abrupt changes in the dynamics of
the inverse solution. Under each of these priors, the discrete-time
stochastic process ðxnÞNn=1 is a non-Gaussian random process whose
increments are statistically dependent.

The Inverse Solution: Spectrotemporal Pursuit. We formulate the
problem of computing a robust spectral decomposition as one of
Bayesian estimation in which the posterior density of x given y
fully characterizes the space of inverse solutions. The forward
model of Eq. 3 specifies the likelihood of the data, that is to say
the conditional density of y given x. We assume that the obser-
vation noise vn are samples from independent, identically dis-
tributed, zero-mean Gaussian random vectors with covariance
σ2I. To simplify the notation, we let

fiðx1; x2;⋯; xNÞdlog piðx1 − x0; x2 − x1;⋯; xN − xN−1Þ [8]

for i= 1 and 2 in what follows. We compute robust spectral esti-
mates by solving the MAP estimation problem

max
x1;⋯;xN

−
XN
n=1

1
2σ2

kyn−Fnxnk22 + f ðx1; x2;⋯; xNÞ: [9]

We call the MAP estimation problem of Eq. 9 the spectrotem-
poral pursuit problem, and its solution the spectrotemporal pur-
suit estimate. To solve this optimization problem, we can absorb
the constant σ in f ð·Þ (specifically in α1 in the case of Eq. 6 and α2
in the case of Eq. 7). Therefore, henceforth, we assume that
σ = 1. In SI Text, we give a continuous-time variational interpre-
tation of spectrotemporal pursuit.
Eq. 9, with f ð·Þ= f1ð·Þ, is a strictly concave optimization

problem, which, in principle, can be solved using standard
techniques. However, our experience has shown that these
techniques do not scale well with N because of the batch nature
of the problem. We use the Bayesian formulation of spec-
trotemporal pursuit—in particular, the relationship between
sparsity-promoting priors and the expectation–maximization

(EM) algorithm, to develop highly efficient IRLS algorithms that
exploit the temporal structure of Eq. 9. Gradient-based algorithms
(24, 25) are a popular alternative to IRLS for finding the maximizer
of Eq. 9 with e= 0. One of the advantages of our Bayesian for-
mulation is the ability to characterize the uncertainty of the estimate
in the form of confidence bounds. We discuss this in further detail
in SI Text, Advantages of IRLS over Gradient-Based Methods.

Link of Spectrotemporal Pursuit to Basis Pursuit Denoising, IRLS
Algorithms, and Sparse Recovery. Spectrotemporal pursuit builds
on results in basis pursuit denoising (BPDN) and IRLS algo-
rithms developed to compute sparse decompositions in noise-free
systems. Chen et al. (26) demonstrated using the BPDN algo-
rithm that static signals can be decomposed into sparse repre-
sentations using finite dictionaries obtained by discretizing in the
frequency domain. We termed our procedure spectrotemporal
pursuit to emphasize the link with BPDN. Daubechies et al. (27)
showed under mild conditions that in the absence of noise, IRLS
algorithms can recover sparse signals. It is straightforward to see
that the IRLS algorithm of Daubechies et al. (27) solves a BPDN-
type optimization problem. We recently extended the work of
Daubechies et al. (27) to solve the problem of sparse recovery in
the presence of noise (20), and broadened the family of IRLS
algorithms. The IRLS algorithms we derive in the next section
belong to the broader class of IRLS algorithms we introduced
(20). The key insight from those results, which we apply here, is
that this broad class of IRLS algorithms can be used in the
context of Bayesian estimation of state-space models (28) to
compute highly structured spatiotemporal decompositions effi-
ciently. In SI Text, we elaborate on these relationships.

An IRLS Algorithm for Spectrotemporal Pursuit. We show that we can
obtain the solution x̂ to Eq. 9 as the limit of a sequence

�
x̂ðℓÞ
�∞
ℓ=0

whose ℓth element, ℓ= 1;⋯;∞, is the solution to a Gaussian MAP
estimation problem (constrained least-squares program) of the form

max
x1;⋯;xN

−
XN
n=1

1
2σ2

kyn−Fnxnk22 −
XK
k=1

XN
n=1

�
xn;k − xn− 1;k

�2
2
�
QðℓÞ

n

�
k;k

: [10]

For each ℓ, QðℓÞ
n is a K ×K diagonal matrix that depends on

x̂ðℓ−1Þn−1 ; x̂
ðℓ−1Þ
n and f ð·Þ. For instance, for f ð·Þ= f1ð·Þ,QðℓÞ

n =QðℓÞ does
not depend on n and we have

�
QðℓÞ�

k;k
=

�PN
n=1

�
x̂ðℓ−1Þn;k − x̂ðℓ−1Þn−1;k

�2
+ e2

�1
2

α1
: [11]

Eq. 10 is a quadratic program with strictly concave objective and
block-tridiagonal Hessian. The fixed interval smoother (17)
exploits this structure to give an efficient solution to this pro-
gram via forward–backward substitution. This iterative solu-
tion to the spectrotemporal pursuit problem, which we refer
to as the spectrotemporal pursuit algorithm, can be imple-
mented using the following steps:

Input: Observations y, initial guess x̂ð0Þ of solution, state-noise
covariances Qð0Þ

n , n= 1;⋯;N, initial conditions x0j0, Σ0j0, tolerance
tol∈ ð0; 0:01Þ, and maximum number of iteration Lmax ∈N+.

0. Initialize iteration number ℓ to 1.

1. Filter at time n= 1; 2;⋯;N:
xnjn−1 = xn−1jn−1
Σnjn−1 =Σn−1jn−1 +QðℓÞ

n

Kn =Σnjn−1FH
n ðFnΣnjn− 1F

H
n + σ2IÞ−1

xnjn = xnjn−1 +Knðyn −Fnxnjn−1Þ
Σnjn =Σnjn−1 −KnFnΣnjn−1
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2. Smoother at time n=N − 1;N − 2;⋯; 1:
Bn =ΣnjnΣ−1

n+ 1jn
xnjN = xnjn +Bnðxn+1jN − xn+1jnÞ
ΣnjN =Σnjn +BnðΣn+1jN −Σn+1jnÞBH

n

3. Let x̂ðℓÞn = xnjN ; n= 1;⋯;N and x̂ðℓÞ =ðx̂ðℓÞ′
1
;⋯; x̂ðℓÞ′N Þ′.

4. Stop if kx̂
ðℓÞ−x̂ðℓ− 1Þk2

kx̂ðℓ− 1Þk2
< tol or ℓ=Lmax, else

5. Let ℓ= ℓ+ 1, and update the state covariance QðℓÞ
n . For f ð·Þ=

f1ð·Þ, QðℓÞ
n =QðℓÞ is given by

�
QðℓÞ�

k;k
=

�PN
n=1

�
x̂ðℓ−1Þn;k − x̂ðℓ−1Þn−1;k

�2
+ e2

�1
2

α1

6. Go back to 1.

Output: x̂ðLÞ, where L≤Lmax is the number of the last iteration of
the algorithm.

For f ð·Þ= f1ð·Þ, starting with x̂ð0Þ a guess of the solution, we
solve Eq. 10 for ℓ= 1; 2;⋯;L with QðℓÞ iteratively updated using
Eq. 11. L is the smallest of Lmax, a prespecified maximum
number of iterations, and the number of iterations when the con-
vergence criterion of step 4 of the spectrotemporal pursuit algo-
rithm is first satisfied. Consistent with previous reports (20), we have
found that a small number of IRLS iterations (between 5 and 10)
are sufficient in practice. Due to the dynamic nature of our state-
space model, the MAP estimation problem Eq. 10 admits an iter-
ative solution given by the fixed interval smoother. As noted pre-
viously, QðℓÞ is independent of n for the penalization function f1ð·Þ.
Solving the IRLS problem in Eq. 10 with

�
QðℓÞ�

k;k
in Eq. 11

is an EM algorithm (19, 20) for solving Eq. 9 with f ð·Þ= f1ð·Þ.
The EM algorithm minorizes the objective function of Eq. 9
by a local quadratic approximation to the log-prior, which results
in the least-squares problem of Eq. 10. The Hessian of the qua-
dratic approximation is a function of QðℓÞ in Eq. 11. One way to
derive Eq. 11 is to invoke the concavity of the function s1=2, which
implies that the linear approximation around a point s satisfies
s1=2 ≤ s1=2 + 1

2s1=2
ðs− sÞ. Applying this result to the log-prior at

x̂ðℓ−1Þ allows us to readily extract
�
QðℓÞ�

k;k
in Eq. 11.

In general, it can be shown that for priors from the GSM
family of distributions, the EM algorithm for solving the MAP
estimation problem of Eq. 9 results in IRLS solutions (20). The
connection to EM theory leads to a class of IRLS algorithms
(20) much broader than that considered in the existing liter-
ature (27) and a much simpler convergence analysis (20). We
establish convergence of the IRLS algorithm of Eq. 10 as
a theorem in Appendix: Convergence of the IRLS Algorithm.
The convergence does not follow from the analysis of Dau-
bechies et al. (27). The proof requires novel ideas (20) that we
adapt to the current setting.
The difficulty in solving the spectrotemporal pursuit prob-

lem of Eq. 9 arises from the choice of the prior probability
density functions over w1;w2;⋯;wN (Eqs. 6 and 7), which, for
each k= 1;⋯;K , groups ðwn;kÞNn=1 across time. At first glance,
this grouping suggests a batch solution. However, recognizing the
connection with the EM theory for GSMs yields an IRLS solu-
tion that can be solved efficiently using the fixed interval
smoother, owing to the dynamic structure of the state-space
model. A large class of optimization problems can be solved by
IRLS (29). In practice, however, the update step of IRLS is
challenging. One attractive feature of our formulation is its
modularity: each IRLS update step is simple in the sense that it
can be solved using any algorithm that can solve a strictly con-
cave quadratic program with block-tridiagonal Hessian.
We can easily specialize the discussion above to f ð·Þ= f2ð·Þ. In

particular, if we let

�
QðℓÞ

n

�
k;k

=
2
α2

��
x̂ðℓ−1Þn;k − x̂ðℓ−1Þn−1;k

�2
+ e2

�1
2

×

 XN
n′=1

��
x̂ðℓ−1Þn′;k − x̂ðℓ−1Þn′−1;k

�2
+ e2
�1

2

!1
2

;

[12]

Eq. 10 becomes an IRLS algorithm for solving the spectrotem-
poral pursuit problem with f ð·Þ= f2ð·Þ. In this case, we can also
prove the convergence of the algorithm. However, because f2ð·Þ
is not concave, we can only guarantee convergence to a stationary
point of the objective in Eq. 9 (20). In both cases, the role of e is to
avoid division by zero in forming the quadratic approximation of
Eq. 10. As in the case of static IRLS (20), we expect the solution to
be close, in some sense, to the maximizer of Eq. 9 with e= 0.
We use the terminology robust spectral estimator and estimate,

to refer to spectrotemporal pursuit and its solution, respectively.
The former terminology reflects the fact that f1ð·Þ and f2ð·Þ corre-
spond to GSM (19) prior distributions on x1; x2 − x1;⋯;
xN − xN−1, which are robust in the statistical sense (19).

Analysis of Spectral Resolution.Determining the frequency resolution
of a given estimator is a central question in spectral estimation. To
characterize the resolution for nonparametric spectral estimators, we
must study the properties of the so-called “taper” that is applied to
the data. For instance, the multitaper spectral estimator uses the
discrete prolate spheroidal sequences as tapers, which are known to
have very small side lobes in the frequency domain (9). From the
recursive form of the fixed interval smoother, it is not evident how the
robust estimator fits into the tapering framework of nonparametric
spectral estimators. In what follows, we show how the spectral res-
olution of the robust spectral estimator can be characterized.
Before proceeding with the analysis, let us first consider the

linear least-squares estimate of x. Recall the compact form of the
forward model y=Fx+ v, where F is given in Eq. 4. Let us as-
sume for convenience that the window length W is an integer
multiple of the number K of discrete frequencies, i.e., W = rK for
some integer r, so that Fn =F1, for all n. The linear least-squares
estimator maps the data y to

x̂d
1
rW

FHy; [13]

from which we can compute the spectrum as the component-wise
magnitude of x̂ of the data. In other words, the rows of ð1=rW ÞFH

form a bank of filters, which consists of sliding windows of the
Fourier basis on the interval ½1;W �. The side lobes of these filters
determine the spectral resolution. In Appendix: Robust Spectral
Decomposition as a Filter Bank, we show that for f ð·Þ= f1ð·Þ, the
estimate x̂ from the robust spectral estimator is given by

lim
ℓ→∞

x̂ðℓÞ =GFHy; [14]

where G is a weighting matrix and is only a function of the
window size W and Qð∞Þ d limℓ→∞QðℓÞ. The rows of GFH form
a filter bank whose output is equivalent to that of the robust
spectral estimator at windows n= 1; 2;⋯;N. As shown in the
appendix, the advantages of the weighting matrix G are twofold.
First, the weighting shapes the Fourier basis by an effectively
exponential taper for higher side-lobe suppression. Second, the
choice of Qð∞Þ from the data determines the gain of each filter;
i.e., the filters corresponding to the large (small) elements of
Qð∞Þ are likely to have a high (low) gain. Therefore, the shaping
of the filters is determined by the data itself.
Eq. 14 provides an ex post prescription to analyze the reso-

lution and leakage of the robust spectral estimate; i.e., given W
and Qð∞Þ, we can form the matrix GFH , the rows of which are the
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equivalent bank of filters corresponding to the robust spectral
estimator in windows n= 1; 2;⋯;N.

Toy Example Revisited
We use the data simulated in the toy example to compare the
spectral estimates computed using spectrotemporal pursuit to
the spectrogram computed using the multitaper method (8).
Fig. 2 A and B show the spectrogram estimates obtained by the

multitaper method with 2-s temporal resolution and the multi-
taper method with 0.5 Hz frequency resolution, respectively. Fig. 2,
Right, shows the zoomed-in view of the estimates in the in-
terval t= 250 s to t= 350 s. We used a time bandwidth product
of three and five tapers in both cases. The multitaper estimate
with 2-s temporal resolution has a theoretical frequency resolu-
tion of 3 Hz (9), and as can be seen from Fig. 2A, is unable to
resolve the closely spaced signals of 10 and 11 Hz in the fre-
quency domain. However, the temporal details are captured to
a certain extent. For the multitaper estimate with 0.5 Hz fre-
quency resolution, the temporal resolution is 12 s and, as can be
observed from Fig. 2B, the estimate it produces is smeared along
the time axis and does not capture the details of the 0.04-Hz
amplitude modulation. However, the two tones of 10 Hz and 11
Hz are well-resolved. For both multitaper instances, a significant
amount of the additive noise has leaked into the spectrogram
estimates. In other words, the multitaper approach is unable to
denoise the estimate. Fig. 2C shows the spectral estimate ob-
tained using spectrotemporal pursuit. Similarly, Fig. 2C, Right,
shows the zoomed-in view of the estimate in the interval
t= 250 s to t= 350 s. Spectrotemporal pursuit gives the sparse,
more compact representation that we would hope to recover
given the simulated data of Eq. 1. Indeed, we are able to faith-
fully recover the two tones as well as their temporal modulation.
In addition, the spectral estimate from Fig. 2C is significantly
denoised relative to that in Fig. 2 A and B. Lastly, as Fig. 2C sug-
gests, spectrotemporal pursuit is able to overcome the fundamental
limits imposed by the classical uncertainty principle (14): the
spectral estimate of Fig. 2C exhibits high resolution both in time

and in frequency; to illustrate this, we examine the two filters that,
when applied to the data from the toy example, reproduce the
spectrotemporal pursuit spectral estimates at frequencies 10 Hz and
5 Hz, respectively. Fig. 3 shows the equivalent filters corresponding
to the spectrotemporal pursuit estimator at frequencies 10 Hz and
5 Hz for t= 300 s. The equivalent filter at 10 Hz corresponds to the
component 10 cos8ð2πf0tÞsinð2πf1tÞ and, as explained in Toy Ex-
ample, resembles a 10-Hz oscillation that is exponentially decaying
in a piece-wise constant fashion. The first side-lobe is ∼10.5 Hz,
with a suppression of ∼25 dB. The equivalent filter at 5 Hz, how-
ever, corresponds to a frequency that is not part of the signal.
Hence, the peak gain is ∼10 dB smaller than that of the 10-Hz filter.
As a result, the 5-Hz component of the estimate is negligible.
This toy example demonstrates the potential of structured time–

frequency representations used in the spectrotemporal pursuit
framework to go beyond the classical time–frequency resolution
limits imposed by the uncertainty principle (14), and capture the
dynamics of a signal whose time-varying mean is the sum a small
number of oscillatory components.

Applications of Spectrotemporal Pursuit to Neural Signal
Processing
A Spectrotemporal Pursuit Analysis of EEG Recordings. We first il-
lustrate the application of spectrotemporal pursuit by computing the
robust spectral decomposition of frontal EEG data recorded from
a patient during general anesthesia for a surgical procedure at
MassachusettsGeneral Hospital. The recording and analysis of these
EEGdata are part of an ongoing study that has been approved by the
Massachusetts General Hospital Human Research Committee. All
data collected were part of routine anesthesia care. General anes-
thesia is typically induced with propofol and is commonlymaintained
by administering a propofol infusion. Because data collection inter-
acted in no way with patient management, and because all data were
deidentified, informed patient consent was not required. A case is il-
lustrated inFig. 4. Thepatient received a bolus i.v. injection of propofol
at ∼3.5 min, followed by a propofol infusion at 120 mcg·kg−1·min−1

that was maintained until minute 27, when the case ended.
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When administered to initiate general anesthesia, propofol
produces profound slow (<1 Hz) and delta (1–4 Hz) oscillations
(Fig. 4, minute 5) (15, 21). With maintenance of general anes-
thesia, using propofol we observe an alpha oscillation (8–12 Hz)
in addition to the slow and delta oscillations. The presence of the
alpha oscillations along with the slow and delta oscillations is a
marker of unconsciousness (15, 21). Developing a precise charac-
terization of the dynamic properties of propofol is important for
helping to define the neural circuit mechanisms of this anesthetic.
We computed the spectrogram for T = 35 min of EEG data,

sampled at a rate fs = 250 Hz, using the multitaper method with

2-s temporal resolution (Fig. 4A), multitaper method with 0.5 Hz
frequency resolution (Fig. 4B), and the magnitude of the spectral
estimates from the spectrotemporal pursuit estimator with prior
f2ð·Þ (Fig. 4C). Fig. 4, Right, shows zoomed-in views of the spec-
trogram from minute 15 to minute 18. For the spectrotemporal
pursuit analysis, W = 500, N = 1; 050, and we select α2 by splitting
the data into two sequences consisting of its even and odd times,
respectively, and performing a form of twofold cross-validation
(30). In other words, we assume that the spectrotemporal pursuit
estimate of the spectrum is constant in windows of length 2 s. For
each 2-s window of data, Fn is the 500× 500 matrix, which is the
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Fourier basis for the discrete-time interval ½ðn− 1ÞW + 1; nW � for
n= 1; 2;⋯;N. Because the original data are acquired at twice the
sampling rate of the even and odd splits, the value of α2 used on
the original data are half of that obtained by cross-validation
because the variance of random walk as in Eq. 5 increases
linearly with time.
By setting the choice of tapers or the analysis window, it is

possible, with the multitaper method, to achieve either high
frequency or high temporal resolution. In contrast, as in the toy
example, spectrotemporal pursuit achieves high temporal res-
olution, high spatial resolution, and performs significant
denoising of the spectrogram. As a consequence of the simul-
taneous enhanced time–frequency resolution in the spec-
trotemporal pursuit analysis, the slow and delta oscillations are
clearly delineated during induction (minute 3.5), whereas dur-
ing maintenance (minutes 5–27), the oscillations are strongly
localized in the slow delta and alpha bands. Furthermore, the
denoising induced by spectrotemporal pursuit creates a ≈ 30-
dB difference between these spectral bands and the other fre-
quencies in the spectrum.
The spectrotemporal pursuit analysis offers the possibility of

achieving a more precise delineation of the time–frequency prop-
erties of the EEG under propofol general anesthesia. We use this
method to analyze in detail the dynamics of propofol as well as the
other commonly used anesthetics.

A Spectrotemporal Pursuit Analysis of Neural Spiking Activity.
Modulation of neuronal firing rates by brain rhythms has been
well documented (21, 31). During propofol-induced general
anesthesia, the transition into and out of consciousness is char-
acterized by abrupt changes both in average neuronal firing rates
as well as their modulation by a low-frequency (≈ 0:5 Hz) oscil-
lation (21). Local field potentials (LFPs) are routinely recorded
simultaneously with spike-train data. Typically, the spike-field co-
herence, a measure of phase synchronization between spike trains
and LFPs, is used to quantify the modulation of firing rates by
oscillations and its time course. Despite the prevalence of modu-
lation of neuronal firing rates by brain rhythms, there are no
principled approaches that use spike-train data alone, without re-
course to LFPs, to extract oscillatory dynamics. We adapt our
spectrotemporal pursuit framework to point-process data and ap-
ply it to neural spiking data acquired from a human subject during
the induction of propofol general anesthesia. This study was ap-
proved by the Massachusetts General Hospital Human Research
Committee. In accordance with the Partners Human Research
Committee, informed consent was obtained from all patients.
We assume that the spike train from each of the neurons

recorded during the experiment is the realization of a point
process (32) in the interval ð0;T�. A point process is an ordered
sequence of discrete events that occur at random points in
continuous time. For a neural spike train, the elements of the
sequence give the times in ð0;T� when the membrane potential
of a neuron crosses a predetermined threshold—that is, the
times when the neuron emits a spike. A point process is fully
characterized by its conditional intensity function (CIF) (32). In
our notation, the binary time series yt ∈ f0; 1g; t= 1;⋯;T, rep-
resents the discrete-time point-process data. We denote by
0≤ λt <∞; t= 1;⋯;T the sampled CIF of the point process.
Letting λndðλðn−1ÞW+1; λðn−1ÞW+2;⋯; λnW Þ′, we begin with a
point-process spectrotemporal forward model, which consists of
a spectrotemporal parametrization of the CIF as follows:

log λn =Fnxn; [15]

where log λndðlog λðn− 1ÞW + 1; log λðn− 1ÞW + 2;⋯; log λnW Þ′ for
n= 1; 2;⋯;N. Eq. 15 is a time–frequency representation of
the time-varying CIF of a point process: xn; n= 1; 2;⋯;N rep-

resent the signals modulating each of the oscillations (in
Fn; n= 1; 2;⋯;N) comprising the CIF.
We estimate ðxnÞNn=1 by solving the following MAP estima-

tion problem

max
x1;⋯;xN

XN
n=1

y′n logλn − 1′
W
λn + f2ðx1; x2;⋯; xNÞ; [16]

where 1W is the vector of ones in RW , and under a generalized
linear model (Eq. 15). The objective function of Eq. 16 trades off
the point process log-likelihood (3, 32) with the log-prior in
Eq. 7, which enforces sparsity in frequency and smoothness in
time. Eq. 16 is a point-process version of spectrotemporal pursuit
(Eq. 9). We compute the solution x̂ to Eq. 16 as the limit of a
sequence

�
x̂ðℓÞ
�∞
ℓ=0

whose ℓth element, ℓ= 1;⋯;∞, is the solution to

max
x1;⋯;xN

XN
n=1

yn′ Fnxn − 1W′ e
Fnxn −

XK
k=1

XN
n=1

�
xn;k − xn− 1;k

�2
2
�
QðℓÞ

n

�
k;k

; [17]

whereQðℓÞ
n is given in Eq. 12 and eFnxn is theRW vector with entries

eðFnxnÞw ;w= 1; 2;⋯;W . Each iteration can be implemented effi-
ciently using a point-process smoothing algorithm (18). It is not
hard to prove that the conclusions of the theorem in Appendix:
Convergence of the IRLS Algorithm, regarding convergence, also
hold for the sequence generated using this algorithm. However, as
stated previously, we can only guarantee convergence to a station-
ary point of the objective (20) because f2ð·Þ is not concave.
We used this algorithm to compute a spectral representation of

the population rate function of 41 neurons recorded in a patient
undergoing intracranial monitoring for surgical treatment of epi-
lepsy (21) using a multichannel microelectrode array implanted in
temporal cortex. Recordings were conducted during the admin-
istration of propofol for induction of anesthesia. In ref. 21, the
authors extensively describe the experimental protocol under
which these data were collected and further use the data to elu-
cidate the neurophysiological processes that characterize the
transition into loss of consciousness (LOC) during propofol-in-
duced general anesthesia. Fig. 5 depicts the data collected during
this experiment as well as the results of our analysis; Fig. 5, Right,
show the respective zoomed-in views of Fig. 5, Left, from t= 140 s
to t= 152 s. Fig. 5 A and B show, respectively, the LFP activity
and a raster plot of the neural spiking activity collected during the
experiment. The bolus of propofol is administered at ∼ 0 s. As
reported in ref. 21, propofol-induced unconsciousness occurs
within seconds of the abrupt onset of a slow (≈ 0:5 Hz) oscillation
in the LFP. Moreover, neuronal spiking is strongly correlated to
this slow oscillation, occurring only within a limited slow oscilla-
tion-phase window and being silent otherwise.
We demonstrate modulation of the neural spiking activity by the

slow oscillation during the transition into LOC under propofol-
induced general anesthesia by analysis of the neural spiking activity
alone. Fig. 5C shows the firing rate estimates obtained using the
standard peristimulus time histogram (PSTH; black) with a bin size
of 125 ms and the spectrotemporal pursuit solution (red), re-
spectively. In each 125-ms bin, the PSTH is the total number of
spikes across all units divided by the product of the number of units
and the bin size. Consistent with the findings of Lewis et al. (21), the
firing rate of the neurons reaches a maximum at the troughs of the
slow ≈ 0:5-Hz oscillation in the LFP. The robust firing rate estimate
from spectrotemporal pursuit is much smoother. Fig. 5D shows the
novel spectral decomposition of the firing rate of the cortical neu-
rons in the range 0.05 Hz to 1 Hz during propofol-induced general
anesthesia. For this analysis, we set fs = 1 kHz, T = 1;000 s,
W = 125, and N = 8;000. In other words, we assume that the
spectral decomposition is constant in windows of length 125 ms. For
each 125-ms window of data, Fn is a 125× 50 matrix obtained using
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50 equally spaced values in the range ½0:05; 1� Hz. We constructed
the observation vector yn ∈R125 in each window by summing the
spikes from all 41 units in each 1-ms bin. To select α2, we split the
41 units randomly into two disjoint sets of 21 and 20 units, re-
spectively, and performed twofold cross-validation on this splitting.
Our analysis reveals that the onset of LOC under propofol-

induced general anesthesia in the patient is accompanied by the
onset of a strong ≈ 0:45-Hz oscillation. Fig. 5E shows the con-
tribution of this ≈ 0:45-Hz oscillation to the log of the pop-
ulation firing rate (Eq. 15). We are able to quantify the extent to
which this oscillation modulates the firing rate of cortical neurons
at a resolution of 125 ms. Before LOC (before ∼ 0 s), our analysis
(Fig. 5E) shows that the slow oscillation does not contribute sig-
nificantly to the firing rate of cortical neurons. However, during
the recovery period, the slow oscillation increases the firing rate of
cortical neurons by up to a factor of ∼ 3 above its local mean. Fig.
5E further indicates that the ≈ 0:45-Hz component of the firing
rate estimate from spectrotemporal pursuit is 180 degrees out of
phase with the LFP activity. In other words, following LOC, the
troughs of the LFP activity coincide with the times at which the
contribution of this oscillation to the firing rate of cortical neurons
is maximum. We computed the 95% confidence bounds in Fig. 5E,

Right, by using the covariance matrices ðΣnjNÞNn=1 from the last
iteration of the spectrotemporal pursuit algorithm.
Our analysis demonstrates that spectrotemporal pursuit can

help clarify the relationship between neural spiking and LFPs.

Discussion
Robust Spectral Decomposition for Signals with Structured Time–
Frequency Representations. Classical nonparametric spectral esti-
mation methods use sliding windows with overlap to implicitly
enforce temporal smoothness of the spectral estimate. This
widely adopted approach does not adequately describe signals
with highly structured time–frequency representations. We de-
velop a robust nonparametric spectral decomposition paradigm
for batch time-series analyses, termed spectrotemporal pursuit,
that uses a Bayesian formulation to explicitly enforce smoothness in
time and sparsity in frequency of the spectral estimate. Spec-
trotemporal pursuit yields spectral estimates that are significantly
denoised and have significantly higher time and frequency resolu-
tion than those obtained using the multitaper method. We illus-
trated spectrotemporal pursuit on a simulated signal comprising two
nearby frequency components with a highly modulated amplitude,
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as well as on human EEG and on human neural spiking activity
both recorded during propofol general anesthesia.
Computation of spectrotemporal pursuit spectral estimates

requires solving a high-dimensional optimization problem (Eq. 9
with substitutions from Eqs. 6–8). By using a relation between ℓ1
minimization, GSM models, and the EM algorithm, we develop
computationally efficient IRLS algorithms to compute the spectral
decomposition. In the problems we study, these algorithms yield
easy-to-implement Kalman (17) and point-process (18) smoothing
algorithms. We also sketch a proof of convergence of the algorithms
(Appendix) that uses ideas developed in ref. 20. We can readily
characterize the achievable spectral resolution of our procedure
because the spectrotemporal pursuit solution applies a time-varying,
data-dependent filter bank to the observations (Fig. 3).
Spectrotemporal pursuit offers a principled alternative to exist-

ing methods, such as EMD, for decomposing a noisy time-series
into a small number of oscillatory components (13); in spec-
trotemporal pursuit, this is easily handled using the regularization
parameters α1 and α2, respectively, in the cases of f1ð·Þ and f2ð·Þ,
which we estimate from the time-series using cross-validation (30).

Alternate Approaches to Compute Spectral Representations of Signals
that Exhibit Dynamic Behavior. For deterministic signal models, no-
table contributions are those in refs. 33 and 34 for a signal model
consisting of a small number of amplitude-modulated oscillations
as in refs. 11 and 16. In the context of stochastic signals, the authors
in ref. 35 propose an algorithm to estimate the nonparametric,
nonstationary spectrum of a Dahlhaus locally stationary process.
Lastly, dynamic models with time-varying sparsity have been pro-
posed in several contexts (36, 37). In principle, these latter models
can be applied to time-varying parametric spectral estimation using
autoregressive models.
In SI Text, we discuss in greater detail the similarities and

differences between these works and spectrotemporal pursuit.

Future Work. In future reports we plan to extend our current for-
mulation of spectrotemporal pursuit to compute smooth in time
and sparse in frequency spectral estimates using filter algorithms.
This development will be critical for online computation of robust
spectral decompositions using our paradigm. We will also extend
our formulation to dictionaries other than Fourier representations.
The present formulation of spectrotemporal pursuit requires the
user to specify the size W of the window over which the spectrum is
constant. In our examples, these choices were informed by the time
scales that are believed to be physiologically relevant (15, 21). We
are currently developing dynamic versions of the matching pursuit
algorithm (38), an efficient algorithm for solving sparsity-enforcing
optimization problems, which will obviate the need for specifyingW.
In conclusion, computing efficient spectral summaries of time

series is a common challenge in many fields of science and en-
gineering. Spectrotemporal pursuit offers a new approach to
robust spectral analysis of batch time series which should be
applicable to a broad range of problems.

Appendix: Convergence of the IRLS Algorithm
The following theorem states the convergence of the IRLS al-
gorithm of Eq. 10.
Theorem. Let x̂ð0Þ ∈RK and

�
x̂ðℓÞ
�∞
ℓ=1

∈RNK be the sequence
generated by the IRLS algorithm of Eq. 10 with

�
QðℓÞ

n

�
k;k

as in
Eq. 11. Then, (i)

�
x̂ðℓÞ
�∞
ℓ=0

is bounded, (ii) ∃ x= limℓ→∞ x̂ðℓÞ, and
(iii)

�
x̂ðℓÞ
�∞
ℓ=0

converges to the unique stationary point of the ob-
jective of Eq. 9 with f ð·Þ= f1ð·Þ.
The proof follows the same lines as that of theorem 3 in ref.

20. We only give the main ideas here.
Proof 1 (sketch of proof). Let f ð·Þ= f1ð·Þ in Eq. 9. The concavity

of the
ffiffi
·

p
function implies that the objective in Eq. 10 with�

QðℓÞ�
k;k

as in Eq. 11 is a lower bound of that in Eq. 9. Moreover,

the difference between these two objectives attains a maximum
at x̂ðℓ−1Þ. We can use this to show (20) that Eq. 10 generates a se-
quence that is nondecreasing when evaluated at the objective of Eq.
9. Along with the fact that the objective of Eq. 9 is strictly concave
and coercive (39); this implies that the sequence

�
x̂ðℓÞ
�∞
ℓ=0

lies in a
compact set, and hence is bounded. Therefore, there exists a con-
vergent subsequence with limit point x. Take any convergent sub-
sequence, each of its elements satisfies the first-order necessary
and sufficient optimality conditions for the objective of Eq. 10,
which, in the limit, are equivalent to the first-order necessary and
sufficient optimality condition for the unique maximizer of Eq. 9.

Appendix: Robust Spectral Decomposition as a Filter Bank
The following proposition characterizes the equivalent filter
banks corresponding to the robust spectral estimator:
Proposition. Let W = rK for some integer r, so that Fn =F1, for

all n and let F be as defined in Eq. 4. Let Qð∞Þ be the element-wise
limit point of QðℓÞ. Moreover, suppose that N is large enough so that
ΣNjN converges to its steady-state value denoted by Σð∞Þ and that
each iteration of fixed-interval smoother is initialized using the
steady-state value of Σnjn in the previous iteration. Then, the esti-
mate from the robust spectral estimator is given by

lim
ℓ→∞

x̂ðℓÞ =GFHy; [18]

where

Gd

0
BBBBB@

Λ0Γ Λ1Γ Λ2Γ ⋯ ΛN−1Γ
Λ1Γ Λ0Γ Λ1Γ ⋯ ΛN−2Γ
Λ2Γ Λ1Γ Λ0Γ ⋯ ΛN−3Γ
..
. ..

. ..
.

⋱ ..
.

ΛN−1Γ ΛN−2Γ ΛN−3Γ ⋯ Λ0Γ

1
CCCCCA; [19]

with

ΛdΣð∞Þ�Σð∞Þ +Qð∞Þ�−1;
and

Γd
�
Σð∞Þ +Qð∞Þ

�"
I− rW

��
Σð∞Þ +Qð∞Þ

�−1
+ rW I

�−1
#
:

Proof 2 (sketch of proof). Consider the fixed interval smoother
at the ℓth iteration of the robust spectral estimator. By expanding
the estimate x̂njN in terms of ðylÞNl=1, it is not hard to show that

x̂njN =
Xn−1
s=1

"Yn−1
m=s

ðI−KmFmÞ
#
Ksys +Knyn +

XN
s=n+ 1

"Ys
m=n

Bm

#
Ksys

[20]

with Bm =ΣmjmΣ−1
m+ 1jm. Also, we have I−KmFm =ΣmjmΣ−1

mjm−1. In
the steady state, we have Σmjm =Σð∞Þ and Σmjm−1 =Σð∞Þ +Qð∞Þ,
for all m. Hence, the expression for x̂njN simplifies to

x̂njN =
XN
s=1

Λjs−njΓFH
s ys; [21]

with Λ and Γ as defined in the statement of the proposition.
Expressing the above expression in compact form gives the state-
ment of the proposition.
The proposition states that the spectral estimate at window n

is a tapered version of the Fourier transform of the data, where
the taper at window s is given by Λjs−njΓ; this can be viewed as an
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exponentially decaying taper in the matrix form, because the
eigenvalues of Λ are bounded by 1. To illustrate this observation,
assume that Qð∞Þ = qI for some positive constant q. Then, it is
not hard to verify that Λ= γI and Γ= ηI for some positive con-
stants 0< γ ≤ 1 and η> 0. Then, the equivalent sliding taper ap-
plied to the data are given by the exponential taper ηγjsj.
The rows of GFH form a filter bank whose output is equiv-

alent to that of the robust spectral estimator at windows
n= 1; 2;⋯;N. As mentioned before, the advantage of the
weighting factor G is twofold. First of all, the weighting shapes
the Fourier basis by an effectively exponential taper for higher
side-lobe suppression. Second, the choice of Qð∞Þ from the
data determines the gain of each filter; i.e., the filters corre-
sponding to the large (small) elements of Qð∞Þ are likely to
have a high (low) gain. Therefore, the shaping of the filters is
determined by the data itself. Note that given Qð∞Þ, we can
compute Σð∞Þ by numerically solving a Riccati equation, and

form the matrix GFH , the rows of which are the equivalent
bank of filters corresponding to the robust spectral estimator
at windows n= 1; 2;⋯;N.
This characterization of the spectral resolution of the robust

spectral estimator, as well as its interpretation as a filter bank,
applies to the case of Qð∞Þ independent of n (time); this holds for
log-prior f1ð·Þ and its associated Qð∞Þ, which is the element-wise
limit of Eq. 11. The element-wise limit of Eq. 12, which corre-
sponds to log-prior f2ð·Þ, is not independent of n. Eq. 2, however,
is quite general and adopts a similar form once the appropriate
substitutions are made. We restricted our attention to Qð∞Þ in-
dependent of n to convey the key ideas.
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