393 research outputs found

    Genetic differentiation in Scottish populations of the pine beauty moth Panolis flammea (Lepidoptera: Noctuidae)

    Get PDF
    Pine beauty moth, Panolis flammea (Denis & Schiffermüller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.A.J. Lowe, B.J. Hicks, K. Worley, R.A. Ennos, J.D. Morman, G. Stone and A.D. Wat

    Nonlinear Transport in a Quantum Point Contact due to Soft Disorder Induced Coherent Mode Mixing

    Full text link
    We show that the coherent mixing of different transverse modes, due to forward scattering of carriers by soft impurity- or boundary potentials leads to a nonlinear, asymmetric current response of quantum point contacts (QPC). The oscillating contribution to the current is sensitive both to driving voltage and to gate voltage in direct analogy to the electrostatic Aharonov-Bohm effect. Our calculations are in a good agreement with recent experimental data showing small-scale conductivity nonlinearities and asymmetry in QPC.Comment: 4 pages, 2 figures (availiable upon request), REVTEX, Applied Physics Report 93-4

    Graphene based superconducting quantum point contacts

    Full text link
    We investigate the Josephson effect in the graphene nanoribbons of length LL smaller than the superconducting coherence length and an arbitrary width WW. We find that in contrast to an ordinary superconducting quantum point contact (SQPC) the critical supercurrent IcI_c is not quantized for the nanoribbons with smooth and armchair edges. For a low concentration of the carriers IcI_c decreases monotonically with lowering W/LW/L and tends to a constant minimum for a narrow nanoribbon with WLW\lesssim L. The minimum IcI_c is zero for the smooth edges but eΔ0/e\Delta_{0}/\hbar for the armchair edges. At higher concentrations of the carriers this monotonic variation acquires a series of peaks. Further analysis of the current-phase relation and the Josephson coupling strength IcRNI_cR_N in terms of W/LW/L and the concentration of carriers revels significant differences with those of an ordinary SQPC. On the other hand for a zigzag nanoribbon we find that, similar to an ordinary SQPC, IcI_c is quantized but to the half-integer values (n+1/2)4eΔ0/(n+1/2)4e\Delta_{0}/\hbar.Comment: 8 pages, 5 figure

    Mesoscopic scattering in the half-plane: squeezing conductance through a small hole

    Full text link
    We model the 2-probe conductance of a quantum point contact (QPC), in linear response. If the QPC is highly non-adiabatic or near to scatterers in the open reservoir regions, then the usual distinction between leads and reservoirs breaks down and a technique based on scattering theory in the full two-dimensional half-plane is more appropriate. Therefore we relate conductance to the transmission cross section for incident plane waves. This is equivalent to the usual Landauer formula using a radial partial-wave basis. We derive the result that an arbitrarily small (tunneling) QPC can reach a p-wave channel conductance of 2e^2/h when coupled to a suitable reflector. If two or more resonances coincide the total conductance can even exceed this. This relates to recent mesoscopic experiments in open geometries. We also discuss reciprocity of conductance, and the possibility of its breakdown in a proposed QPC for atom waves.Comment: 8 pages, 3 figures, REVTeX. Revised version (shortened), accepted for publication in PR

    Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems

    Get PDF
    We study spin effects in the magneto-conductance of ballistic mesoscopic systems subject to inhomogeneous magnetic fields. We present a numerical approach to the spin-dependent Landauer conductance which generalizes recursive Green function techniques to the case with spin. Based on this method we address spin-flip effects in quantum transport of spin-polarized and -unpolarized electrons through quantum wires and various two-dimensional Aharonov-Bohm geometries. In particular, we investigate the range of validity of a spin switch mechanism recently found which allows for controlling spins indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a transfer-matrix model for one-dimensional ring structures presented in the first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article

    TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia

    Get PDF
    The hypoglossal nucleus was recently identified as a key brain region in which the presence of TDP-43 pathology could accurately discriminate TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis (ALS). The objective of the present study was to assess the hypoglossal nucleus in behavioral variant frontotemporal dementia (bvFTD), and determine whether TDP-43 in this region is associated with clinical ALS. Twenty-nine cases with neuropathological FTLD-TDP and clinical bvFTD that had not been previously assessed for hypoglossal TDP-43 pathology were included in this study. Of these 29 cases, 41% (n = 12) had a dual diagnosis of bvFTD-ALS at presentation, all 100% (n = 12) of which demonstrated hypoglossal TDP-43 pathology. Of the 59% (n = 17) cohort that presented with pure bvFTD, 35% (n = 6) were identified with hypoglossal TDP-43 pathology. Review of the case files of all pure bvFTD cases revealed evidence of possible or probable ALS in 5 of the 6 hypoglossal-positive cases (83%) towards the end of disease, and this was absent from all cases without such pathology. In conclusion, the present study validates grading the presence of TDP-43 in the hypoglossal nucleus for the pathological identification of bvFTD cases with clinical ALS, and extends this to include the identification of cases with possible ALS at end-stage

    Numerical evolutions of nonlinear r-modes in neutron stars

    Get PDF
    Nonlinear evolution of the gravitational radiation (GR) driven instability in the r-modes of neutron stars is studied by full numerical 3D hydrodynamical simulations. The growth of the r-mode instability is found to be limited by the formation of shocks and breaking waves when the dimensionless amplitude of the mode grows to about three in value. This maximum mode amplitude is shown by numerical tests to be rather insensitive to the strength of the GR driving force. Upper limits on the strengths of possible nonlinear mode--mode coupling are inferred. Previously unpublished details of the numerical techniques used are presented, and the results of numerous calibration runs are discussed.Comment: RevTeX 4, 17 pages, 26 figures. Slightly revised. To be published in PRD (April 2002

    Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment

    Full text link
    The K2K long-baseline neutrino oscillation experiment uses a Scintillating Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino interactions in the near detector. We describe the track reconstruction algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI

    Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors

    Full text link
    It is predicted that certain atomically ordered interfaces between some ferromagnetic metals (F) and semiconductors (S) should act as ideal spin filters that transmit electrons only from the majority spin bands or only from the minority spin bands of the F to the S at the Fermi energy, even for F with both majority and minority bands at the Fermi level. Criteria for determining which combinations of F, S and interface should be ideal spin filters are formulated. The criteria depend only on the bulk band structures of the S and F and on the translational symmetries of the S, F and interface. Several examples of systems that meet these criteria to a high degree of precision are identified. Disordered interfaces between F and S are also studied and it is found that intermixing between the S and F can result in interfaces with spin anti-filtering properties, the transmitted electrons being much less spin polarized than those in the ferromagnetic metal at the Fermi energy. A patent application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure

    A first-in-class, humanized antibody targeting alternatively spliced tissue factor: preclinical evaluation in an orthotopic model of pancreatic ductal adenocarcinoma

    Get PDF
    In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3(rd) leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a K-D in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (similar to 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.Thrombosis and Hemostasi
    corecore