10 research outputs found

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The role of viruses in the etiology and pathogenesis of common cold

    No full text

    Medical management of ulcerative colitis

    No full text

    Author Correction: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function (Nature Communications, (2018), 9, 1, (2098), 10.1038/s41467-018-04362-x)

    No full text
    Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article. © 2019, The Author(s)

    Probing surfaces with thermal He atoms: scattering and microscopy with a soft touch

    No full text
    Helium atom scattering (HAS) is a well established technique, particularly suited for the investigation of insulating and/or fragile materials and light adsorbates including hydrogen. In contrast to other beam techniques based on Xrays or electrons, low energy (typically less than 100 meV) He atoms are scattered by the tail of the electron density distribution which spill out from a surface, therefore HAS is strictly a nonpenetrating technique without any sample damage. HAS has been used to investigate structural properties of crystalline surfaces, including precise determination of atomic step heights, for monitoring thin film growth, to study surface transitions such as surface melting and roughening and for determining the presence and properties of adsorbates. Energy resolved HAS can provide information about surface vibrations (phonons) in the meV range and surface diffusion. This chapter provides a brief introduction to HAS with an outlook on a new, promising surface science technique: Neutral Helium Microscopy

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore