22 research outputs found

    Accelerated expansion from braneworld models with variable vacuum energy

    Full text link
    In braneworld models a variable vacuum energy may appear if the size of the extra dimension changes during the evolution of the universe. In this scenario the acceleration of the universe is related not only to the variation of the cosmological term, but also to the time evolution of GG and, possibly, to the variation of other fundamental "constants" as well. This is because the expansion rate of the extra dimension appears in different contexts, notably in expressions concerning the variation of rest mass and electric charge. We concentrate our attention on spatially-flat, homogeneous and isotropic, brane-universes where the matter density decreases as an inverse power of the scale factor, similar (but at different rate) to the power law in FRW-universes of general relativity. We show that these braneworld cosmologies are consistent with the observed accelerating universe and other observational requirements. In particular, GG becomes constant and Λ(4)≈const×H2\Lambda_{(4)} \approx const \times H^2 asymptotically in time. Another important feature is that the models contain no "adjustable" parameters. All the quantities, even the five-dimensional ones, can be evaluated by means of measurements in 4D. We provide precise constrains on the cosmological parameters and demonstrate that the "effective" equation of state of the universe can, in principle, be determined by measurements of the deceleration parameter alone. We give an explicit expression relating the density parameters Ωρ\Omega_{\rho}, ΩΛ\Omega_{\Lambda} and the deceleration parameter qq. These results constitute concrete predictions that may help in observations for an experimental/observational test of the model.Comment: References added, typos correcte

    Probing Dark Energy with Supernovae : Bias from the time evolution of the equation of state

    Full text link
    Observation of thousands of type Ia supernovae should offer the most direct approach to probe the dark energy content of the universe. This will be undertaken by future large ground-based surveys followed by a space mission (SNAP/JDEM). We address the problem of extracting the cosmological parameters from the future data in a model independent approach, with minimal assumptions on the prior knowledge of some parameters. We concentrate on the comparison between a fiducial model and the fitting function and adress in particular the effect of neglecting (or not) the time evolution of the equation of state. We present a quantitative analysis of the bias which can be introduced by the fitting procedure. Such bias cannot be ignored as soon as the statistical errors from present data are drastically improved.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Field propagation in de Sitter black holes

    Get PDF
    We present an exhaustive analysis of scalar, electromagnetic and gravitational perturbations in the background of Schwarzchild-de Sitter and Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by means of a semi-analytical (WKB) approach and two numerical schemes: the characteristic and general initial value integrations. The results are compared near the extreme cosmological constant regime, where analytical results are presented. A unifying picture is established for the dynamics of different spin fields.Comment: 15 pages, 16 figures, published versio

    Transition from decelerated to accelerated cosmic expansion in braneworld universes

    Full text link
    Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For Omega = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/- 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for Omega = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1. To appear in General Relativity and Gravitatio

    Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

    Full text link
    We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z)H(z) data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z)H(z) data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter zT=0.632−0.127+0.256z_{T}=0.632^{+0.256}_{-0.127}, q0=−0.788−0.182+0.182q_{0}=-0.788^{+0.182}_{-0.182}. Furthermore, using Λ\LambdaCDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of Ω0m\Omega_{0m} and q0q_{0}, but a larger value of zTz_{T} than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: Λ\LambdaCDM, wde(z)=w0w_{de}(z)=w_{0} and wde(z)=w0+w1ln⁥(1+z)w_{de}(z)=w_{0}+w_{1}\ln(1+z).Comment: 18 pages, 8 figure

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.73−0.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1σ1\sigma) −0.09+0.09^{+0.09}_{-0.09} (2σ)(2\sigma), α=−0.09−0.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1σ1\sigma) −0.19+0.26^{+0.26}_{-0.19} (2σ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=−0.96w_{0de}=-0.96 with the 1σ1\sigma confidence level −0.91≄w0de≄−1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    Model-independent dark energy test with sigma_8 using results from the Wilkinson Microwave Anisotropy Probe

    Get PDF
    By combining the recent WMAP measurements of the cosmic microwave background anisotropies and the results of the recent luminosity distance measurements to type-Ia supernovae, we find that the normalization of the matter power spectrum on cluster scales, sigma_8, can be used to discriminate between dynamical models of dark energy (quintessence models) and a conventional cosmological constant model (LCDM).Comment: 5 pages, 6 figures. Additional discussion and reference, matches PRD accepted versio

    A model independent approach to the dark energy equation of state

    Full text link
    The consensus of opinion in cosmology is that the Universe is currently undergoing a period of accelerated expansion. With current and proposed high precision experiments it offers the hope of being able to discriminate between the two competing models that are being suggested to explain the observations, namely a cosmological constant or a time dependent `Quintessence' model. The latter suffers from a plethora of scalar field potentials all leading to similar late time behaviour of the universe, hence to a lack of predictability. In this paper, we develop a model independent approach which simply involves parameterizing the dark energy equation of state in terms of known observables. This allows to analyse the impact dark energy has had on cosmology without the need to refer to particular scalar field models and opens up the possibility that future experiments will be able to constrain the dark energy equation of state in a model independent manner.Comment: 6 pages, 5 figures. Final version to appear in PR

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
    corecore